Class Notes

- Midterm II - Available now, due next Monday
- Problem Set 7 - Available now, due December 11th (grace period through the 16th)
Last class, we started investigating the theory of the lasso estimator.

For the case of X^tX equal to the identity matrix, we were able to quickly establish bounds on the prediction error, estimation of β, and the reconstruction of the support of β.

For an arbitrary X matrix we were able to calculate a bound on $||X(\hat{\beta} - \beta)||^2_2$.

Today’s goal is to establish a bound on $||\hat{\beta} - \beta||^2_2$
The basic starting point from last time was the following decomposition, which had no assumptions beyond linearity of the true model:

\[||X(\beta - b)||_2^2 \leq 2\epsilon^t X(b - \beta) + \lambda \cdot (||\beta||_1 - ||b||_1) \]

Where can think of this decomposition as the loss to be minimized, the empirical part, and the penalty term.
I then defined the set

\[A = \{ 2 \| \epsilon^t X \|_\infty \leq \lambda \} \]

And showed that for any \(A > 1 \) we have \(\mathbb{P} A \geq 1 - A^{-1} \) whenever

\[\lambda \geq A \cdot \sqrt{8 \log(2p)\sigma^2} . \]
Today we will motivate a stronger assumption on the model and use these two results to establish bounds on the prediction of β.

Also, it will be helpful to write the set A as being parameterized by the value of λ_0:

$$A(\lambda_0) = \{ 2\| \epsilon^t X \|_{\infty} \leq \lambda_0 \}$$
Bounds on estimation error
We already know that on $\mathcal{A}(\lambda_0)$ and with $\lambda > 2 \cdot \lambda_0$, we have:

\[
\|X(b - \beta)\|_2^2 + \lambda \cdot \|b\|_1 \leq 2\epsilon^t X(b - \beta) + \lambda \cdot \|\beta\|_1 \\
\leq \lambda_0 \|b - \beta\|_1 + \lambda \cdot \|\beta\|_1
\]

Now, multiplying by two gives:

\[
2\|X(b - \beta)\|_2^2 + 2\lambda \cdot \|b\|_1 \leq \lambda \|b - \beta\|_1 + 2\lambda \cdot \|\beta\|_1
\]
Recall that we defined the notation: $S = \{j : \beta_j \neq 0\}$, s is the size of the set S, and v_S is the vector v which has components not in S set to zero.
Notice that:

\[\| b \|_1 = \| b_S \|_1 + \| b_{Sc} \|_1 \]
\[\geq \| \beta \|_1 - \| b_S - \beta \|_1 + \| b_{Sc} \|_1 \]

Using the (reverse) triangle inequality and the fact that \(\beta_{Sc} \) is zero by definition.
Similarly, we have:

$$||b - \beta||_1 = ||b_S - \beta_S||_1 + ||b_{Sc}||_1$$

Where clearly β_S is redundant, but useful to keep the notation straight.
Plugging these in, we now get:

\[2\|X(b - \beta)\|_2^2 + 2\lambda \cdot \|\beta_s\|_1 - 2\lambda \cdot \|b_s - \beta\|_1 + 2\lambda \cdot \|b_{Sc}\|_1 \]

\[\leq \lambda \|b - \beta\|_1 + \lambda \cdot \|b_s - \beta_s\|_1 + 2\lambda \cdot \|b_{Sc}\|_1 \]

Which cancels out as:

\[2\|X(b - \beta)\|_2^2 + \lambda \|b_{Sc}\|_1 \leq 3\cdot \lambda \cdot \|b_s - \beta_s\|_1 \]
This result now actually gives two sub-results, as all three terms are positive and therefore each component of the left hand side is individually bounded by the right hand side.

In particular, we have:

\[\| b_{S^c} \|_1 \leq 3 \cdot \| b_S - \beta_S \|_1 \]

Which implies that the amount of error in \(b \) can not be too highly concentrated on \(S^c \).
The other sub-result gives:

\[2 \| X(b - \beta) \|_2^2 \leq 3\lambda \cdot \| b_s - \beta_s \|_1 \]

If \(\sigma_{\min} \) is the minimum singular value of \(X \), then the left hand side can be bounded below by:

\[2\sigma_{\min}^2 \| b - \beta \|_2^2 \leq 3\lambda \cdot \| b_s - \beta_s \|_1 \]

Using the Cauchy-Schwarz inequality, this becomes:

\[2\sigma_{\min}^2 \| b - \beta \|_2^2 \leq 3\lambda \cdot \sqrt{s} \| b_s - \beta_s \|_2 \]

\[\| b - \beta \|_2 \leq \frac{3\lambda \sqrt{s}}{2\sigma_{\min}^2} \]

Which gives a bound on the error of estimating \(\beta \), which is exactly what we wanted to establish.
Why is this not sufficient for us? Well, in the high dimensional case $p > n$, we will always have σ_{min} equal to 0.

We can get around this problem by defining a modified version of the minimum eigenvector (or squared singular value) by only considering $b - \beta$ such that:

$$\|b_s\|_1 \leq 3 \cdot \|b_s - \beta_s\|_1$$
The (minimum) restricted eigenvalue \(\phi_S \) on the set \(S \) is defined as:

\[
\phi_S = \arg \min_{v \in \mathcal{V}_S} \frac{\|Xb\|_2}{\|b\|_2}
\]

Where:

\[
\mathcal{V}_S = \{ v \in \mathbb{R}^p \text{ s.t. } \|v_{Sc}\|_1 \leq 3 \cdot \|v_S\|_1 \}
\]
Because we do not know \(S \), it is impossible to calculate \(\phi_S \) in practice. In theoretical work, often one considers the restricted eigenvalue \(\phi \) defined as the smallest \(\phi_S \) for all sets \(S \) with size bounded by some predefined \(s_0 \).
Now, we can bound the following using our prior result:

\[
2\|X(b - \beta)\|^2_2 + \lambda \cdot \|b - \beta\|_1 \\
= 2\|X(b - \beta)\|^2_2 + \lambda \cdot \|b_S - \beta_S\|_1 + \lambda \cdot \|b_{S^c}\|_1 \\
= 4\lambda \cdot \|b_S - \beta_S\|_1
\]

Using Cauchy-Schartz again, we can change the ℓ_1-norm to an ℓ_2-norm at the cost of a factor of \sqrt{s}:

\[
2\|X(b - \beta)\|^2_2 + \lambda \cdot \|b - \beta\|_1 \leq 4\lambda \cdot \sqrt{s} \cdot \|b_S - \beta_S\|_2
\]

Finally, we now use the restricted eigenvalue ϕ to convert from β space to $X\beta$ space:

\[
2\|X(b - \beta)\|^2_2 + \lambda \cdot \|b - \beta\|_1 \leq 4\lambda \cdot \sqrt{s} \cdot \|X(b_S - \beta_S)\|_2 / \phi
\]
I am now going to use an inequality trick that is often useful in theoretical statistics derivations. For any u and v, notice that $4uv \leq u^2 + 4v^2$.

For a proof, notice that it is trivially true at zero and negative values of u and v. Then look at the derivatives and notice that the right hand side grows faster than the left hand side in the directions of both u and v.
Setting \(u = \|X(b_S - \beta_S)\|_2 \), we then have:

\[
2\|X(b - \beta)\|_2^2 + \lambda \cdot \|b - \beta\|_1 \leq \|X(b_S - \beta_S)\|_2 + 4\lambda^2 \cdot \frac{s}{\phi^2} \\
\leq \|X(b - \beta)\|_2^2 + 4\lambda^2 \cdot \frac{s}{\phi^2}
\]

And when canceling one factor of \(\|X(b - \beta)\|_2 \):

\[
\|X(b - \beta)\|_2^2 + \lambda \cdot \|b - \beta\|_1 \leq 4\lambda^2 \cdot \frac{s}{\phi^2}
\]

Which holds on the entire set \(\mathcal{A}(\lambda_0) \).
This establishes two simultaneous bounds:

\[\|X(b - \beta)\|_2^2 \leq 4\lambda^2 \cdot \frac{s}{\phi^2} \]
\[\|b - \beta\|_1 \leq 4\lambda \cdot \frac{s}{\phi^2} \]

Though the first is slightly less satisfying than our result in last class as it relies on ϕ^2, though it no longer requires the norm of β.
Asymptotic analysis
As before, we can convert a more natural re-scaled problem by dividing all of the λ parameters by \sqrt{n}.

Also, remember that for some $A > 1$, we have $\mathbb{P} A(\lambda_0) \geq 1 - A^{-1}$ for all $\lambda > A \cdot \sqrt{16n^{-1} \log(2p)\sigma^2}$.
Therefore, we have:

\[\| b - \beta \|_1 \leq 4\lambda \cdot s \cdot /\phi^2 \]

\[\leq 8 \cdot A\sigma^2 /\phi^2 \cdot \frac{s_n^2 \log(2p_n)}{n} \]

Which is the same result as from the Bickel, Ritov, Tsybakov paper.
To establish consistency of the estimator under constant noise and restricted eigenvalues ϕ^2, we need the following limit to go to zero:

$$\lim_{n \to \infty} \frac{s_n^2 \log(2p_n)}{n} = 0$$

Which can happen with a number of different scalings, such as a constant number of non-zero terms but an exponential number of non-zero terms. Or, s_n growing like $n^{1/3}$ and p_n growing linearly with s_n.
Some (personal) closing thoughts on the application of the lasso theory to data analysis:

1. The theory is useful for establishing a rough rule of thumb for how large p_n and s_n can be to have a reasonable chance of reconstructing β or $X\beta$

2. The theory also helps guide where to start looking for the optimal λ

3. We still generally need some form of cross validation however, as the theoretical values tend to overestimate λ in practice; we also do not know σ^2 and in theory need to use an over-estimate for the convergence results to hold

4. Bounds on $\|X(\beta - \hat{\beta})\|_2^2$ are nice to have, however the theoretical bounds on $\|\beta - \hat{\beta}\|_2^2$ are difficult to use in practice due to the near-impossible to calculate restricted eigenvalue assumption

5. I have always been skeptical of the asymptotic results for the same reason; ϕ likely depends on n, p_n and s_n in complex ways that are not accounted for
For our next (and last) week we will:

1. use the lasso to encode more complex forms of linear sparsity (e.g., outlier detection and the fused lasso)
2. give an alternative approach to solving for the lasso solution at a particular value of \(\lambda \)