
Lecture 23
Alternating Direction Method of
Multipliers
09 December 2015

Taylor B. Arnold
Yale Statistics
STAT 312/612

1/33

Class Notes

– Problem Set 7 - Available now, hand in at 24 Hillhouse by 4pm
on December 16th

2/33

Midterm II
Easy solution to question 1:

> X <- matrix(rnorm(12),nrow=4)
> s <- svd(X)
> svals <- c(1,1,1e-10)
> X <- s$u %*% diag(svals) %*% t(s$v)
> X

[,1] [,2] [,3]
[1,] -0.3425962 0.50634449 0.1048543
[2,] 0.2080486 -0.53566801 0.3398572
[3,] -0.3472912 0.07954308 0.8733534
[4,] 0.2120066 -0.45074100 0.1781087

3/33

Now notice that a direct solve does not work well:

> beta <- c(1,1,1)
> y <- X %*% beta
> solve(t(X) %*% X, t(X) %*% y, tol=0)

[,1]
[1,] -0.62017237
[2,] 0.01868727
[3,] 0.44511010

4/33

But the pseudo inverse does:

> pseudo <- s$v %*% diag(1/svals) %*% t(s$u)
> pseudo %*% y

[,1]
[1,] 1.000001
[2,] 1.000001
[3,] 1.000000

5/33

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55

0.
1

0.
2

0.
3

0.
4

0.
5

gender prediction error rate

ag
e

pr
ed

ic
tio

n
er

ro
r

ra
te

6/33

ADMM

7/33

Consider the following minimization problem:

minimize f(x)
subject to Ax = b

The Lagrangian function is defined as:

L(x, y) = f(x) + yt(Ax− b)

8/33

Consider the following minimization problem:

minimize f(x)
subject to Ax = b

The Lagrangian function is defined as:

L(x, y) = f(x) + yt(Ax− b)

8/33

As described last time, the dual function is defined as:

g(y) = inf
x
L(x, y)

And the corresponding dual problem is:

y∗ = argmax
y

g(y)

Which yields the solution x∗:

x∗ = argmin
x

L(x, y∗)

With most of the work occurring in solving the dual problem.

9/33

If we have an analytic form of the function g and its gradient,
gradient ascent can be used to repeatedly update y until
convergence by:

yk+1 = yk + α · ∇g(yk)

Likewise, dual ascent is given by:

xk+1 = argmin
x

L(x, yk)

yk+1 = yk + α · (Axk+1 − b)

Which converges to the correct solution under strong assumptions.

10/33

If we have an analytic form of the function g and its gradient,
gradient ascent can be used to repeatedly update y until
convergence by:

yk+1 = yk + α · ∇g(yk)

Likewise, dual ascent is given by:

xk+1 = argmin
x

L(x, yk)

yk+1 = yk + α · (Axk+1 − b)

Which converges to the correct solution under strong assumptions.

10/33

Now, consider if f can be separated as follows:

f(x) =
∑
i

fi(xi)

The Lagrangian can the be written as:

L(x, y) =
∑
i

Li(xi, y)

=
∑
i

fi(x) + ytAixi − ytb

And therefore the x-step in dual ascent can be parallelized over each
xi.

11/33

Specifically:

xk+1
i = argmin

xi
Li(xi, yk)

yk+1 = yk + α · (Axk+1 − b)

Which again, converges to the correct solution under strong
assumptions.

12/33

Now, consider the augmented Lagrangian:

Lρ(x, y) = f(x) + yt(Ax− b) + (ρ/2) ||Ax− b||22

For some value of ρ > 0. This makes dual ascent far more robust,
and yields the following updates:

xk+1 = argmin
x

Lρ(x, yk)

yk+1 = yk + ρ(Axk+1 − b)

Notice that the α in the y-step has been replaced by the ρ in the
augmented Lagrangian. This is called the method of multipliers.

13/33

The method of multipliers will converge under much more relaxed
conditions, but we have a squared norm of the penalty this will no
longer allow for splitting the optimization problem across fi(xi)’s.

14/33

The method alternating direction method of multipliers, or
ADMM, combines the splitting capability of dual ascent with the
robustness of the method of multipliers. It solves the optimization
problem:

minimize f(x) + g(z)
subject to Ax+ Bz = c

With the augmented Lagrangian:

Lρ(x, z, y) = f(x) + g(z) + yt(Ax+ Bz− c) + (ρ/2) ||Ax+ Bz− c||22

15/33

To solve this, we add three types of updates:

xk+1 = argmin
x

Lρ(x, zk, yk)

zk+1 = argmin
z

Lρ(xk+1, z, yk)

yk+1 = yk + ρ · (Axk+1 + Bzk+1 − c)

Where solving the first two steps simultaneously would yield the
same solution as the method of multipliers. The alternating in the
name refers to alternating between x-updates and z-updates.

16/33

If we replace uk = (1/ρ)yk, this allows combining the linear and
quadratic terms in the augmented Lagrangian. The update now can
be written explicitly:

xk+1 = argmin
x

{
f(x) + (ρ/2)||Ax+ Bzk − c+ uk||22

}
zk+1 = argmin

z

{
f(x) + (ρ/2)||Axk+1 + Bz− c+ uk||22

}
uk+1 = uk + (Axk+1 + Bzk+1 − c)

17/33

Assume f and g are convex, closed, and proper and L0 has a saddle
point. Then ADMM converges in both feasibility (does the
constraint hold) and optimality (is the function to be optimized near
its optimal value).

18/33

Consider now the lasso problem. We’ll write it here in ‘numerical
analysis’ notation (so A is the data matrix, x in the unknown
parameter, and b is the response):

argmin
x

(1/2)||Ax− b||22 + λ||x||1

As we did last class, we’ll write this as a a constrained problem:

minimize (1/2)||Ax− b||22 + λ||z||1
subject to x− z = 0

Where we have separated the ℓ2-loss as a function of x and the
ℓ1-penalty as a function of z.

19/33

So the x-step in ADMM amounts to finding the minimum over x of
the following quantity:

f(x) + (ρ/2)||Ax+ Bz− c+ u||22 = ||Ax− b||22 + (ρ/2)||x− z+ u||22

If we translate to w = x− z+ u this is just ridge regression on w,
which we have an analytic formula for. Transforming the variables
we get specifically:

xk+1 = (AtA+ ρI)−1(Atb+ ρzk − uk)

20/33

So the x-step in ADMM amounts to finding the minimum over x of
the following quantity:

f(x) + (ρ/2)||Ax+ Bz− c+ u||22 = ||Ax− b||22 + (ρ/2)||x− z+ u||22

If we translate to w = x− z+ u this is just ridge regression on w,
which we have an analytic formula for. Transforming the variables
we get specifically:

xk+1 = (AtA+ ρI)−1(Atb+ ρzk − uk)

20/33

Now, the z-step in ADMM amounts to finding the minimum over x

g(z) + (ρ/2)||Ax+ Bz− c+ u||22 = λ||z||1 + (ρ/2)||x− z+ u||22

And dividing by ρ gives:

argmin
z

{
(1/2)||(x+ u)− z||22 + λ/ρ||z||1

}

Which is just the lasso without an X matrix and on the response
x+ u.

21/33

From lecture 17, we have an analytic formula for the simple lasso
case where the variables are uncorrelated. Here we have an even
more easy formula because X is the identity itself.

Specifically, we have the following formula for the lasso regression

zk+1
i =


xi + ui − λ/ρ (xi + ui) ≥ λ/ρ
xi + ui + λ/ρ (xi + ui) ≤ −λ/ρ
0 else

Called soft-thresholding and denoted by (for the penalty λ/ρ):

zk+1 = Sλ/ρ(xi + ui)

22/33

From lecture 17, we have an analytic formula for the simple lasso
case where the variables are uncorrelated. Here we have an even
more easy formula because X is the identity itself.

Specifically, we have the following formula for the lasso regression

zk+1
i =


xi + ui − λ/ρ (xi + ui) ≥ λ/ρ
xi + ui + λ/ρ (xi + ui) ≤ −λ/ρ
0 else

Called soft-thresholding and denoted by (for the penalty λ/ρ):

zk+1 = Sλ/ρ(xi + ui)

22/33

So the full ADMM lasso update is given by:

xk+1 = (AtA+ ρI)−1(Atb+ ρzk − yk)

zk+1
i = Sλ/ρ(xi + ui)

uk+1 = uk + ρ(xk+1 − zk+1)

Or, in other words, we iteratively do ridge regression followed by
soft-thresholding.

The hard computational part is take the SVD of A, which only needs
to be done once, in order to get the first x-update. There are many
ways of doing this in parallel, particularly when n > p. Otherwise,
all of these ADMM steps can be solved locally on the data. This
allows for massive parallelization gains.

23/33

So the full ADMM lasso update is given by:

xk+1 = (AtA+ ρI)−1(Atb+ ρzk − yk)

zk+1
i = Sλ/ρ(xi + ui)

uk+1 = uk + ρ(xk+1 − zk+1)

Or, in other words, we iteratively do ridge regression followed by
soft-thresholding.

The hard computational part is take the SVD of A, which only needs
to be done once, in order to get the first x-update. There are many
ways of doing this in parallel, particularly when n > p. Otherwise,
all of these ADMM steps can be solved locally on the data. This
allows for massive parallelization gains.

23/33

24/33

25/33

26/33

27/33

Closing thoughts /summary

28/33

In the first lecture I said:

Linear Models is both a capstone to the 241/242 sequence and
the breadth to compliment 610’s depth. It also serves as a
link between the statistical inference courses and the applied
data analysis courses.

Topics will be oriented around linear models (obviously) but
the course is somewhat of a hodgepodge of topics and
applications.

I think this has been generally true; hopefully it has been both a
useful and interesting hodgepodge of topics.

29/33

Techniques

1. classical linear regression
2. weighted least squares
3. hierarchical linear models
4. logistic regression
5. singular value decomposition
6. ridge regression
7. principal components
8. lasso regression
9. elastic net
10. generalized lasso regression

30/33

Applications

1. historical data from 1890’s (Galton’s experiments)
2. larger datasets (airline)
3. unstructured dataset (image corpus, text corpus)

31/33

Numerical algorithms

1. Cholesky w/ backsolve and forwardsolve for LS problem
2. QR of X trick for LS
3. pseudoinverse trick for LS
4. Newton-Raphson, iteratively reweighted least squares (glm)
5. LARs, homotopy path solution for solving lasso
6. coordinate descent (elastic net, problem set 7)
7. Lagrangian dual problem (generalized lasso)
8. alternating direction method of multipliers (today, lasso)

32/33

If you enjoyed this, consider taking Data Mining and Machine
Learning (STAT 365/665) with me in the Spring. It will have an
even heavier focus on applications with considerably less theory.

33/33

