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Class Notes

— Problem Set 7 - Available now, hand in at 24 Hillhouse by 4pm
on December 16th
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Midterm II

Easy solution to question 1:

X <- matrix(rnorm(12) ,nrow=4)

s <- svd(X)

svals <- c(1,1,1e-10)

X <- s$u %*% diag(svals) %*% t(s$v)
X

V V V V V

[,1] [,2] [,3]
[1,] -0.3425962 0.50634449 0.1048543
[2,] 0.2080486 -0.53566801 0.3398572
[3,] -0.3472912 0.07954308 0.8733534
[4,] 0.2120066 -0.45074100 0.1781087
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Now notice that a direct solve does not work well:

> beta <- c(1,1,1)

> y <= X %x% beta

> solve(t(X) %% X, t(X) %*% y, tol=0)
[,1]

[1,] -0.62017237

[2,]1 0.01868727

[3,] 0.44511010

4/33



But the pseudo inverse does:

> pseudo <- s$v %*% diag(1l/svals) %*% t(s$u)
> pseudo %*% y
[,1]
[1,] 1.000001
[2,1 1.000001
[3,] 1.000000
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ADMM

7/33



Consider the following minimization problem:

minimize f{x)
subjectto Ax=">b
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Consider the following minimization problem:

minimize f{x)
subjectto Ax=">b

The Lagrangian function is defined as:

L(x,y) = flx) + ¥'(Ax — b)
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As described last time, the dual function is defined as:
g(y) = infL(x, y)
And the corresponding dual problem is:

y" = argmaxg(y)
y

Which yields the solution x*:

x* = argmin L(x, y*)

With most of the work occurring in solving the dual problem.
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If we have an analytic form of the function g and its gradient,
gradient ascent can be used to repeatedly update y until
convergence by:

Y =y +a- V()
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If we have an analytic form of the function g and its gradient,
gradient ascent can be used to repeatedly update y until
convergence by:

Y =y +a- V()

Likewise, dual ascent is given by:
1 = arg min L(x, y¥)
X
P =y ta (A —p)

Which converges to the correct solution under strong assumptions.
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Now, consider if fcan be separated as follows:
fl) =) filx)
i
The Lagrangian can the be written as:
Lixy) = 3 Lixiy)
i
= Zﬁ(x) + y'Aixi — y'b

i

And therefore the x-step in dual ascent can be parallelized over each

Xi.
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Specifically:
Xfi‘"‘l = arg min L,'(xi, yk)

yk+1:yk+a~(Axk+1—b)

Which again, converges to the correct solution under strong
assumptions.
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Now, consider the augmented Lagrangian:
Lo(x,y) = flx) + y'(Ax — b) + (p/2) [|Ax — b3

For some value of p > 0. This makes dual ascent far more robust,
and yields the following updates:

K = argmin L,(x, y¥)
yk+1 — yk + p(Akarl . b)

Notice that the « in the y-step has been replaced by the p in the
augmented Lagrangian. This is called the method of multipliers.
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The method of multipliers will converge under much more relaxed
conditions, but we have a squared norm of the penalty this will no
longer allow for splitting the optimization problem across fi(x;)’s.
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The method alternating direction method of multipliers, or
ADMM, combines the splitting capability of dual ascent with the
robustness of the method of multipliers. It solves the optimization
problem:

minimize f{x) + g(z)
subjectto Ax+ Bz=¢

With the augmented Lagrangian:

Ly(x,2,y) = flx) + g(2) + ¥'(Ax+ Bz — ©) + (p/2) || Ax + Bz — ¢ 3
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To solve this, we add three types of updates:
T = argmin L, (x, 25, y¥)
X
2 = argmin L,(x, z, )

YL = yF - (AL BT )

Where solving the first two steps simultaneously would yield the
same solution as the method of multipliers. The alternating in the
name refers to alternating between x-updates and z-updates.
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If we replace u. = (1/p)y¥, this allows combining the linear and
quadratic terms in the augmented Lagrangian. The update now can
be written explicitly:

K+ = argmin {f(x) +(p/2)||Ax+ B — c + u"ll%}
1 = argmin {flx) + (p/2)[[4*! + Bz — ¢+ |13}

uk+1 — uk 4 (Axk+1 + sz+1 _ C)
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Assume fand g are convex, closed, and proper and Ly has a saddle
point. Then ADMM converges in both feasibility (does the
constraint hold) and optimality (is the function to be optimized near
its optimal value).
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Consider now the lasso problem. We’ll write it here in ‘numerical
analysis’ notation (so A is the data matrix, x in the unknown
parameter, and b is the response):

argmin(1/2) || Ax — blJ3 + Al|].

As we did last class, we’ll write this as a a constrained problem:

minimize (1/2)||Ax — b2 + Al|z||1
subjectto x—2z=0

Where we have separated the ¢2-loss as a function of x and the
£1-penalty as a function of z.
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So the x-step in ADMM amounts to finding the minimum over x of
the following quantity:

fx) + (p/2NAx + Bz — e+ ul[3 = [|Ax = BI[5 + (p/2)||x — 2+ ulf3
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So the x-step in ADMM amounts to finding the minimum over x of
the following quantity:

fx) + (p/2NAx + Bz — e+ ul[3 = [|Ax = BI[5 + (p/2)||x — 2+ ulf3

If we translate to w = x — z + u this is just ridge regression on w,
which we have an analytic formula for. Transforming the variables
we get specifically:

T = (A'A + p) 71 (A + p2F — ub)
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Now, the z-step in ADMM amounts to finding the minimum over x

8(2) + (p/2)l|Ax + Bz — ¢+ ul5 = A|zl[1 + (p/2)l]x — 2+ ull3

And dividing by p gives:

argzmin{(l/Q)H(er w) = 2|5+ A/ plll|1}

Which is just the lasso without an X matrix and on the response
X+ u
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From lecture 17, we have an analytic formula for the simple lasso
case where the variables are uncorrelated. Here we have an even
more easy formula because X is the identity itself.
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From lecture 17, we have an analytic formula for the simple lasso
case where the variables are uncorrelated. Here we have an even
more easy formula because X is the identity itself.

Specifically, we have the following formula for the lasso regression

xi+ui—MNp (xi+uw)>Np
2= it uw+Np (at+w) < —\p
0 else
Called soft-thresholding and denoted by (for the penalty A/ p):

ZkJrl = S)\/p(xi + ui)
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So the full ADMM lasso update is given by:

K = (A'A + p) YA + p2F — )
Zi-ﬁ_l = S,\/p(xi + ui)

WL = gk 4 (kL R

Or, in other words, we iteratively do ridge regression followed by
soft-thresholding.
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So the full ADMM lasso update is given by:

K = (A'A + p) YA + p2F — )
Zi-ﬁ_l = S,\/p(xi + ui)

WL = gk 4 (kL R

Or, in other words, we iteratively do ridge regression followed by
soft-thresholding.

The hard computational part is take the SVD of A, which only needs
to be done once, in order to get the first x-update. There are many
ways of doing this in parallel, particularly when n > p. Otherwise,
all of these ADMM steps can be solved locally on the data. This
allows for massive parallelization gains.
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CLOSING THOUGHTS /
SUMMARY
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In the first lecture I said:

Linear Models is both a capstone to the 241/242 sequence and
the breadth to compliment 610’s depth. It also serves as a

link between the statistical inference courses and the applied
data analysis courses.

Topics will be oriented around linear models (obviously) but

the course is somewhat of a hodgepodge of topics and
applications.

I think this has been generally true; hopefully it has been both a
useful and interesting hodgepodge of topics.
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Techniques

10.

RS A A o o

classical linear regression
weighted least squares
hierarchical linear models
logistic regression

singular value decomposition
ridge regression

principal components

lasso regression

elastic net

generalized lasso regression
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Applications

1. historical data from 1890’s (Galton’s experiments)
2. larger datasets (airline)

3. unstructured dataset (image corpus, text corpus)
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Numerical algorithms

1. Cholesky w/ backsolve and forwardsolve for LS problem

2. QR of X trick for LS

pseudoinverse trick for LS

Newton-Raphson, iteratively reweighted least squares (glm)
LARs, homotopy path solution for solving lasso

coordinate descent (elastic net, problem set 7)

Lagrangian dual problem (generalized lasso)

S A

alternating direction method of multipliers (today, lasso)
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If you enjoyed this, consider taking Data Mining and Machine
Learning (STAT 365/665) with me in the Spring. It will have an
even heavier focus on applications with considerably less theory.
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