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Notes:

▶ Problem set 5 is due a week from today
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Outline for this week:

▶ Monday
▶ walk through R reference implementation of back-propagation
▶ address issues of slow learning
▶ over-fitting / regularization
▶ initializing weights

▶ Wednesday
▶ quasi second order SGD
▶ learning rate schedule
▶ hyper-parameter selection heuristics
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Today’s�Notes

For today, rather than re-writing someone else’s notes, I am simply going to go through
the notes on this page:

http://neuralnetworksanddeeplearning.com/chap3.html

The primary reason for this is that there are some great visualizations embedded on the
page; also, as I have used the exact same notation as presented here, there should be no
great confusion in doing so.

There are three summary slides here for reference purposes, which summarize the main
points I am covering today.
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Cross-entropy�and�soft-max

Due to the shape of the sigmoid neuron, weights that are very far from their optimal
values learn slowly in a plain, vanilla network. Two ways to fix this are to use the
cross-entropy cost-function, defined as:

C = −
∑

j

[
yj log(aL

j ) + (1− yj) log(1− aL
j )
]

For a single sample, and similarly for an entire mini-batch.

Another common approach is to define what is termed a softmax layer. The redefines the
activations of the output later, aL, as follows:

aL
j =

ezL
j∑

k ezL
k

This has the additional benefit that the last layer is easily interpreted as a sequence of
probabilities.
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Regularization�in�Neural�Networks

As the size of neural networks grow, the number of weights and biases can quickly
become quite large. State of the art neural networks today often have billions of weight
values. In order to avoid over-fitting, one common approach is to add a penalty term to
the cost function. Common choices are the ℓ2-norm, given as:

C = C0 + λ
∑

i
w2

i

Where C0 is the unregularized cost, and theℓ1-norm:

C = C0 + λ
∑

i
|wi|.

The distinction between these is similar to the differences between lasso and ridge
regression.
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Dropout

A very different approach to avoiding over-fitting is to use an approach called dropout.
Here, the output of a randomly chosen subset of the neurons are temporarily set to zero
during the training of a given mini-batch. This makes it so that the neurons cannot
overly adapt to the output from prior layers as these are not always present. It has
enjoyed wide-spread adoption and massive empirical evidence as to its usefulness.
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