Handout 06: Set Theory and Probability

A set is an unordered collection of unique elements. Typically, we will talk about sets having elements that all come from some larger containing set called a sample space, which we will denote as S. Given arbitrary sets A and B from a sample space S, we have the following definitions and notation.

- We write $a \in A$ to indicate that a is an element of the set A.
- A is a subset of $B, A \subseteq B$, if all elements of A are also in B.
- The union $A \cup B$ consists of every element in either A or B.
- The intersection $A \cap B$ consists of elements in both A and B.
- The difference $A-B$ are elements that are in A but not in B.
- The complement of A, written A^{c}, is $S-A$, everything not in A.
- The cardinality of A, written $|A|$, measures the size A.
- The empty set, written \emptyset, is a set with no elements.

There are a variety of different theorems that we could prove describing how these different operations relate to one another. I think it is better to avoid dumping them all on you at once and derive them as we need them. We start with a few of the most useful results on today's worksheet.

We will use set notation to give a non-naïve definition of probability. Our sample space S will indicate all of the possible unique outcomes of some random event. We will use the term event for sets A that are subsets S. Finally, we can define a probability function \mathbb{P} that maps each event to a probability value between 0 and 1 . The probability function must have certain properties that match our conventional understanding of probability, as described in the following definition.

Definition 6.1 A probability function \mathbb{P} for a sample space S associates a probability between 0 and 1 to subsets of S such that:

1. $\mathbb{P}[S]=1$.
2. For every pair of events A and B such that $A \cap B=\emptyset$ we have: ${ }^{1}$

$$
\mathbb{P}(A \cup B)=\mathbb{P} A+\mathbb{P} B
$$

The pair (S, \mathbb{P}) is called a probability space.
From this definition, the naïve definition of probability follows from a particular choice of a probability function:

$$
\mathbb{P}_{\text {naïve }}(A)=\frac{|A|}{|S|}
$$

There are many important consequences that derive from the definition of a probability function. We will explore these over the next few class meetings.

