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Handout 15: Normal Distribution

We write X ∼ N(µ, σ2) to indicate that X is a random variable with a
normal distribution having mean µ and variance σ2.1 The pdf is given 1 I have split the density into two

parts. The one on the left is the
normalizing constant. This is fixed for
any choice of the parameters µ and σ2

with respect to x. The shape of the
distribution is set by the part on the
right.

by:

fX(x) =

[
1√
2πσ2

]
×
[
e−

(x−µ)2

2σ2

]
In the special case that the mean is 0 and the variance is 1, we say
that this is a standard normal distribution. The standard normal is
traditionally denoted with the letter Z; it has special notation for its
pmf and cdf:

ϕ(z) =
1√
2π

· e−
(z)2

2 , Φ(z) =

∫ z

−∞

1√
2π

· e−
(x)2

2 dx

All of the results that we want to establish regarding the normal can be
derived from the mgf, which is given by the following:2 2 The notation indicates that we raise

the values inside of the exp to the
power of e.

mX(t) = exp
{
µt+

1

2
σ2t2

}
We will show several results regarding the normal distribution on today’s
worksheet, including a derivation of the mgf as a starred problem. Here,
let’s state and prove the most important result that we will show all
semester.

Theorem 15.1 (Central Limit Theorem) Let X1, X2, . . . be a se-
quence of i.i.d. random variables from a distribution with a mean of 0

and a variance of 1. Define the sample average X̄n for an n as:

X̄n =
X1 + · · ·+Xn

n

Then, as n → ∞, we have:
√
n · X̄n = Zn −→

d
N(0, 1)

Proof. We prove the theorem assuming that the mgf of X1, which we
will call M(t), exists. We know that this is the mfg for all of the Xi’s
because the Xi all come from the same distribution. Because X1 has a
mean of 0 and a variance of 1, we know that M(0) = 1, M ′(0) = 0, and
M ′′(0) = 1. Now, notice that the moment generating function of Zn is



2

given by:

MZ(t) = E
[
et·Z

]
= E

[
et·

√
n·X̄n

]
= E

[
e
t· 1√

n
·
∑

i Xi

]
=

∏
i

E
[
e
t· 1√

n
·Xi

]
=

[
E
[
e
t· 1√

n
·X1

]]n
=

[
M

(
t√
n

)]n
We want to show that the limit of this quantity is et

2/2, the mgf of a
standard normal distribution. A helpful trick is that we can instead
show that the logarithm of this function converges to the logarithm of
the standard normal mgf.3 Then, we have: 3 The logarithm of the mgf is a fre-

quently used tool called the cumulant-
generating function.lim

n→∞ log
([

M

(
t√
n

)]n)
= n logM

(
t√
n

)
= lim

y→0

log(M(yt))

y2
with y = 1/

√
n

= lim
y→0

tM ′(yt)

2yM(yt)
L’Hôpital’s rule

=
t

2
lim
y→0

M ′(yt)

y
M(yt) → 1

=
t2

2
lim
y→0 M

′′(yt) L’Hôpital’s rule

=
t2

2
.

Therefore, the limit of the log of the mgf is the log of the standard
normal distribution. By definition, then, the value Zn =

√
nX̄n limits

in distribution to a standard normal in distribution ■.

Technically the CLT only says that the scaled sample mean will even-
tually approach the distribution of a standard normal. We will use the
following theorem to justify this on today’s worksheet in terms of the
approximate distribution of a random variable.4 4 You can define this concept in sev-

eral ways, the most straightforward
being that the maximum distance
between the CDF of the true distri-
bution and the approximate one can
be bounded away by ϵ for some large
enough n.

Theorem 15.2 (Central Limit Theorem Approximation) Define
X1, X2, . . . to be a sequence of i.i.d. random variables with finite mean
µ and finite variance σ2. Define the sample average X̄n as in the central
limit theorem. Then:

X̄n ∼̇ N(µ, σ2/n).

Where ∼̇ indicates the concept of approximately distributed as.


