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Worksheet 03 (Solutions)

1. Assume that you have a cup with m black marbles and m white
marbles. Consider selecting a marble, putting it back, and selecting
another marble. What is the probability that both marbles are the
same color? The answer might be obvious from last class. Think about
treating this as a proof that proves your intuition based only on the
naïve definition of probability and basic rule of counting, rather than
focusing on the numerical answer.

Solution: There are 2m possible outcomes when selecting one marble.
Using the basic rule of counting, then, there are 2m × 2m = 4m2 total
ways of selecting two marbles with replacement. For the marbles to
match, we can either select two white marbles or two black marbles.
Consider selecting two white marbles: there are m possible selections for
the first and m possible selections for the second, so m×m = m2 total
choices. The same holds for the black balls, so there are m2+m2 = 2m2

ways of having matching marbles. This gives a probability of:
2m2

4m2
=

1

2
= 0.5.

2. Assume that you have a cup with m black marbles and m white
marbles for some m > 1. Consider selecting one marble and then another
marble, without putting the first one back. What is the probability that
the two marbles are the same color? Again, treat this as a proof rather
than a calculation. What happens when m becomes large?

Solution: The total number of possible selections is a two-stage ex-
periment, with 2m options in the first round and (2m − 1) options in
the second round. So, there are a total of 2m · (2m − 1) total possible
ways to select two marbles. For the marbles to match, we can start with
any marble we want (2m), but in the second round can only select the
remaining m− 1 marbles of the same color. So the probability is:

2m · (m− 1)

2m · (2m− 1)
=

m− 1

2m− 1
.

As m → ∞, we have m − 1 ≈ m and 2m − 1 ≈ 2m, so that the ratio
becomes m

2m = 1
2 . Formally, we can use L’Hôpital’s rule: the top and

bottom both limit to +∞ as m → ∞. The derivative of the top is 1 and
of the bottom is 2.

The intuition that you should be building is that it makes sense that
the difference between replacing the first marble or not decreases (to 0

in the limit) as the total number of marbles increases.
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3. Ignore the issue with leap years and assume that birthdays are
evently distributed throughout the year. What is the probability that
23 randomly selected people will have no shared birthdays? Do not try
to simplify the result yet; just write it in terms of factorials, powers, and
products.1 1 This question is often called the

Birthday Problem, the first of many
famous probability questions we will
study this semester.Solution: The tricky part here is seeing that the two thing we need

to count come straight from the worksheet. We can view someone’s
birthday as being a selection from a set of size 365. We are assigning
birthdays to 23 people, this is an ordered selection done with replace-
ment, since different people could share the same birthday. The event
we want to compute the probability of is when nobody shares a birth-
day. How many ways are there to do this? It is just the number of ways
to selecting 23 things from a set of size 365 without replacement. So:

P(no match) = (365)!/(365− 23)!

36523

=
(365)!

36523 · 342!

Plugging this directly into a calculator will almost certainly not work as
the number (365)! is far too large to compute directly. The number 36523
(just) works in most programming languages, but will almost certainly
exceed the sizes for a standard calculator as well.

4. Take the logarithm of the previous result and simplify as much
as possible, writing the result in terms of lf(·), the logarithm of the
factorial function. Most programming languages have an quick func-
tion to compute the log factorial. For example, lf(365) = 1792.33 and
lf(342) = 1657.34. Using your result, now calculate the decimal version
of the result from the previous question. Does the result seem surprising
to you?

Solution: Using the rules of logarithms, we have:

log
(

(365)!

36523 · 342!

)
= log(365!)− log(36523)− log(342!)

= lf(365)− 23 · log(365)− lf(342)

Plugging in the values, we have:

lf(365)− 23 · log(365)− lf(342) = 1792.33− 23 · 5.899897− 1657.34

= −0.708

Remember that this is the log probability. To get the actual probability,
we take the value as a power of e and get e−0.708 = 0.492 ≈ 0.50. So,
there is about a 50/50 chance that a set of 23 people will not share a
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brithday. And, by symmetry, a 50/50 chance that someone will share a
birthday.

The proportion here may seem surprisingly high since 23 is many
times less than 365. The next question helps explain what is going on a
bit better.

5. How many ways can you pick a pair of people from a set of 23

total people? (⋆) How does this help explain the solution to the previous
question?

Solution: If we cared about ordering, there are just 23 · 22 = 506.
However, this double counts the pairs, since it would count the pairing
of person 1 and person 2 as distinct from the pairing of person 2 and
person 1. Dividing by 2 gives the number of pairs: 506/2 = 253.

We could view the Birthday Problem in terms of considering pairs
of individuals. While you might have thought we would need a group
of around 365/2 = 182.5 people to have a probability of 0.5 of sharing
birthday, it is really more accurate to count the pairs of students, which
is what we are considering in the problem. Since 253 is is greater than
182.5 if anything we might actually expect the probability to be a bit
larger than it is. To understand why it is not around 253/365 ≈ 0.7, we
will need much more probability theory than we have so far produced.
We will get there soon!

6. Three students get on a bus to downtown at the same time. The
bus makes three stops once it arrives in downtown Richmond. If each
student randomly decides which stop to disembark, what is the proba-
bility that everyone gets off at the same stop?

Solution: Using our naïve counting definition we get:

P(event) =
#{ways get off same stop}
#{ways of getting off bus}

=
3

33

≈ 0.111.

7. It is a well known result from calculus that the limit of (1− 1/n)n

as n goes to infinity is e−1. Consider a set of N2 items for which there
are N black items and N2 − N red items. If we sample N items with
replacement from this set, what is the probability that all of them are
are red? Assuming that N is sufficently large, write this in terms of e
using the formula given above.
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Now, take a deep breath. There are approximately 1022 air molecules
in a breath of air and approximately 1044 air molecules in the atmo-
sphere. Assuming air has had plenty of time to mix around the world
in the past two millennia, what is the probability that the breath of air
you just took contains a molecule of air that Caesar exhaled in his dying
breath?

Solution: For the first part, we can use the naïve definition of counting
and our theorem for ordered sampling from a set with replacement. The
total number of options has n = N2 possible items and we are sampling
k = N things, so the total number is (N2)N = N2N . In the numerator,
we have N2 − N red items. How many ways can we select k = N of
them? That’s just nk = (N2 −N)N . So, the probability is:

P [all red] = (N2 −N)N

N2N

=

(
N2 −N

N2

)N

=

(
1− 1

N

)N

And from the handout, we see that in the limit:

lim
N→∞

P [all red] = lim
N→∞

(
1− 1

N

)N

= e−1

For the second part, we see that this is just the above problem where
N = 1022, ‘red’ items are molecules not in Caesar’s dying breath and
‘black’ ones are those that are in being in it. The probability of not
having any of the molecules is e−1, so the probability of having at least
one is 1 − e−1 ≈ 0.632, so greater than 50%! Note that it would be
more appropriate to model this as sampling without replacement, but
given the large amount of molecules the result would not be noticably
different.

ASIDE: A few students asked for a proof of the limit result on the
notes. Here is my best attempt in terms of the fact that e is the only
base b such that f(x) = bx is equal to its own derivative. Define an =

[1− 1/n]n and let:

fn(x) = axn = [1− 1/n]
n·x

For simplicity, substitute m = nx. Then:

fn(x) = [1− x/m]
m
.
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Now, the trick is to take the derivative of fn(x) as a function of x:

d

dx
[fn(x)] =

d

dx
[[1− x/m]

m
]

= m · [1− x/m]
m−1 · −1

m

= −1 · [1− x/m]
m−1

= −1 · fn(x) ·
[
1− x

m

]−1

= −1 · fn(x) · [1− n]
−1

Notice that the limit of the derivative becomes:

lim
n→∞

d

dx
[fn(x)] = lim

n→∞
−1 · fn(x) · [1− n]

−1

= −1 · fn(x)

So, fn(x) is a function such that, for large n, it’s derivative is equal to
−1 times itself. The only base such that bx is equal to its own derivative
is ex and therefore the only function that has a derivative equal to the
negative of it self is (from the chain rule) e−x. And if fn(x) ≈ e−x then
an ≈ e−1.

8. (⋆) Write a formal proof of Theorem 3.1 using the basic rule of
counting and proof by induction. For a proof by induction, you show
that something is true for k = 1 (trival in this case) and then show that
if it is true for k it must be true for k + 1.

Solution: The base case is essentially given by the definition: if we
have n things there are n ways to pick one (k = 1) thing. Now, assume
that there are nk ways to pick k ordered things. We can view picking
k + 1 things as a two-stage experiment: the first stage is selecting the
first k things and the second stage is picking the (k + 1)th thing. By
assumption, the first stage has nk options. We’ve already shown that
selecting one thing from a set of n things has n options. By the basic
rule of counting, the number of ways of picking k + 1 things is then
nk · n = nk+1, which finishes the result.

While we will often skip going through all of the formal steps of
induction in this course, this technique is essential to providing a proper
proof of many probability results.


