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Worksheet 08 (Solutions)

1. (Statistical Inference) In pairs (or triples), select six marbles of one
color (we will call this color C) and four marbles of another color. In
one of the bags (we will call this bag F , for the first bag), place 4 C and
1 non-C marbles. In the other bag, place 2 C and 3 non-C marbles. We
are going to consider an experiment where you select one bag at random
and then randomly select a marble from the choosen bag. The idea is
that we want to see how well you can estimate which bag the marble
came from based on the color of the marble. (a) Compute the two-by-
two table of probabilities where C is the event of selecting a marble
of color C and F is the event of selecting the first bag. (b) What are
the probabilities P(F |C) and P(F c|C)? (c) What are the probabilities
P(F |Cc) and P(F c|Cc)? (d) What is the best guess for a bag if you have
a C marble and what is the best guess if you have a non-C marble? (e)
Let R be the event that your guess of the correct bag is right. What is
P(R)?

(f) Now, we are going to simulate the game 12 times.1 To do this, 1 It may seem silly to go through this
exercise, but I find it really helpful to
have the perspective of the guesser
in which you are updating your
understanding of the bag probabilties
with the data.

have one person close their eyes. The other person rolls the die. If odd,
they select the first bag and hand it to the other person, who then selects
a marble. If even, the pick the second bag and give that instead. Keep
track of the number of correct guesses. Switch roles mid-way through
the simulation. We will aggregate across the class and see if we can get
close to the analytical answer.

Solution: (a) The table will just be the number of marbles in each
intersection, divided by the total number of marbles (10). So:

C Cc Total
F 0.4 0.1 0.5
F c 0.2 0.3 0.5

Total 0.6 0.4 1.00

Parts (b) and (c) come right off of the table. You can either calculate
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each pair of probabilities, or realize that P(F c|C) = 1− P(F |C).

P(F |C) =
P(F ∩ C)

P(C)
=

.4

.6
=

2

3

P(F c|C) =
P(F c ∩ C)

P(C)
=

.2

.6
=

1

3

P(F |Cc) =
P(F ∩ Cc)

P(Cc)
=

.1

.4
=

1

4

P(F c|Cc) =
P(F c ∩ Cc)

P(Cc)
=

.3

.4
=

3

4

From this, and just some basic intuition, we see that (d) we would guess
the first bag if we have the color C and the second bag if we have the
color not-C.

Part (e) is a bit trickier. We need to split the probability up into the
two different bags, keeping in mind that the probability of picking either
bag is 0.5:

P(R) = P(R ∩ F ) + P(R ∩ F c)

= P(R|F ) · P(F ) + P(R|F c) · P(F c)

=
1

2
· [P(R|F ) + P(R|F c)]

We will be right when we sampled from the first bag if we selected a
C marble (probability of 0.8) and right when sampling from the second
bag if we selected a non-C marble (probability 0.6). So:

P(R) =
1

2
· [P(R|F ) + P(R|F c)]

=
1

2
· [0.8 + 0.6]

= 0.7

So, you should be correct 70% of the time with your guess. Much better
than guessing by chance.

(f) There will be some variation with your specific 12 trials. Ag-
gregating across the class should yield something close to the correct
probability.

2. (Simpson’s Paradox) There are two physicians named Dr. A and
Dr. Z. Each of them performs two types of procedures: band-aid removal
(B) and heart surgery (H). Their recent performance is given by the
following tables:

Heart Band-Aid
Success 70 10
Failure 20 0

Dr. A

Heart Band-Aid
Success 2 81
Failure 8 9

Dr. Z
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For this question, we will use the empirical probability of each event.
That is, the value of every probability PE is given by the proportion of
procedures from the data for which E occurs. (a) Compute the proba-
bility that a procedure done by Dr. A is successful and the probability
that a procedure done by Dr. Z is successful. Who seems to be the
better physician? (b) Compute the probabilities that each procedure
is successful, conditioned on the doctor doing the procedure and which
procedure is being done. Who seems to be the better physician now?
(c) What paradox seems to exist? Can you explain why this happens?

Solution: The first two parts are just counting. (a) We have:

P[S|A] =
80

100
= 0.80

P[S|Z] =
83

100
= 0.83

So it seems that Dr. Z has a slightly higher percentage of their proce-
dures being successful. For (b), we have:

P[S|A ∩B] =
10

10
= 1.00

P[S|Z ∩B] =
81

90
= 0.90

P[S|A ∩H] =
70

90
= 0.78

P[S|Z ∩H] =
2

10
= 0.20

So Dr. A seems to be better at both band-aid removal and heart surgery.

(c) The paradox, if you want to call it that, is that Dr. A seems to
be better at both procedures but worse when we combine the data. A
simple way to explain this is that Dr. A does a higher proportion of
the heart surgery procedures than Dr. Z. Since heart surgery is slightly
more difficult than band-aid removal, even though Dr. A is better at
both, the mixture of their procedures causes Dr. Z’s overall rate to
be higher. This is a notorously common phenomenon in data science
and is extremely difficult to identify. The general trouble is that we
often do not know or have easy access to the confounding variable—
here, the procedure type—and often need to have a deep understanding
of the problem domain to understand what confounding variables may
be missing from an analysis.2 2 The extreme values here and silly

example of equating band-aid removal
with heart surgury makes the result
seem more obvious, which is the in-
tent. These things actually happen
in real-life medicine, where the best
physicians get the most challeng-
ing cases and often have the worst
outcome metrics. Similarly, experi-
mental procedures may be done only
on patients with the worst prognosis,
making them look much worse even if
they are actually better.

3. (Monty Hall) This is a probability question so well-known my
guess is that most of you have already heard of it. But let’s see how we
can answer it in a formal, systematic way. There are three doors, one
randomly has a car behind it and the other two have goats. A contestant
is playing a game in which they want to win the car. In the first round,
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they stand in front of a door that the are thinking of picking. The host of
the game, Monty Hall, selects one of the other doors that he knows has
a goat behind it and opens it for everyone to see. The contestant now
has to pick the door they actually want to open and then open it. What
is the probability that they will win if they switch their choice from the
first selection? Hint: We can assume that the contestant selects door
1.3 Let C1, C2, and C3 be the events that the car is behind door 1, 2, 3 If not, relabel the doors so their

choice is called door 1.and 3, respectively and W be the event that the contestant wins if they
switch their choice.

Solution: We want to get the probability P(W ). We can split this
like we did on our tables, but this time between three mutually exclusive
events:

P(W ) = P(W ∩ C1) + P(W ∩ C2) + P(W ∩ C3)

= P(C1) · P(W |C1) + P(C2) · P(W |C2) + P(C3) · P(W |C3)

=
1

3
× 0 +

1

3
× 1 +

1

3
× 1 = 0 +

1

3
+

1

3

= 2/3

So in general there is a 2/3 chance that switching doors will result in a
win. The reason that P(W |C1) is zero is because, if the car is behind
door number 1, then switching will always lose. However, if the car is
behind either of the other doors, switching will always win, so we get
P(W |C2) = P(W |C3) = 1.

4. (Monty Hall, revisited) Consider a variation of the previous prob-
lem where there are seven doors, all equally likely to have the prize. In
the second round, Monty Hall randomly selects three goat doors that
are you not in front of to open. There is now a closed door you are in
front of and three other remaining doors. What is the probability that
you will win if you switch to one of the other three doors?

Solution: We can define Cj in the same way as before. Let’s define
W to be the event of winning if we switch. Then:

P(W ) = P(W ∩ C1) + P(W ∩ C2) + · · ·+ P(S ∩ C7)

= P(C1) · P(W |C1) +

7∑
i=2

P(Ci) · P(W |Ci)

=
1

7
× P(W |C1) +

1

7
×

7∑
i=2

P(W |Ci)

As before, P(W |C1) is zero, since not switching will always lose. How
about the other doors? If we are conditioning on the event Ci, where
i ̸= 1, we know that switching will result in a win 1/3 of the time. Why?
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We are guessing between the three remaining open doors; there are three
of them, and we are equally likely to get the answer correct. So:

P(W ) =
1

7
×

7∑
i=2

P(W |Ci)

=
1

7
×

7∑
i=2

1

3

=
1

7
× 6

3
=

2

7
≈ 0.286

As in the original problem, you double your chances by switching, but
here the overall chances are lower.

5. (Hard!/Fun?) Consider an airplane with 100 seats assigned to each
of 100 passengers. The first person to board has had too much to drink
and selects their seat at random. Everyone else sits in their assigned
seat unless it is already occupied, in which case they select a seat at
random from the remaining empty seats. What is the probability that
the last person to board will sit in their own seat?4 4 Try to do this with a much smaller

number of passengers and see if you
can find a pattern. This question is
better to do with some basic logic
rather than formal probability ma-
nipulations. I include it here because
it fits the general theme of the other
questions.

Solution: This is difficult question, but it is too fun not to put on a
worksheet. It was asked as a question on the statistics Ph.D. qualifying
exam the year before I took my qualifiers.

Trying to directly count the probabilities here is essentially impossi-
ble. The trick is to consider the following: what possible seats could the
last person find themself sitting in? The only possible seats are (1) their
own seat or (2) the first person’s seat. Why? Passengers 2-99 always
sit in their assigned seat if it’s free when they board, so there is no way
their seat could still be free when the last person boards. Now, notice
that to everyone but the last person to board there is no difference be-
tween the first person’s seat and the last person’s seat. The first person
just sits at random and everyone else only distinguishes their seat from
everything else. Therefore, by symmetry, the probability that the last
person is left with their own seat must be equal to the probability that
the last person is left with the first person’s seat. Since these are the
only two options, the probabilities must add up to 1. Therefore, there
is a probability of 0.5 that the last person sits in their own seat. The
total number of seats is a red herring, of course, and the result is the
same regardless of the total number of passengers.

6. (Prosecutor’s Falacy) There are 10000 people living in a remote
rural town. One night, a chicken is stolen from the town barn. The
person who stole the chicken accidentally cut themselves on some barb
wire escaping the scene, leaving just enough evidence to determine that
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the blood type of the thief is B positive. The next morning, a man
is arrested for the crime who has B positive blood type. Based on
knowledge that this type of blood (B positive) is only present in 8.5% of
people in the US (and this town in particular), the prosectutor for the
case argues that there is a 91.5% chance that arrested man commited
the crime. (a) Write out the problem using some probabilistic notation.
(b) Find a better measurement of the man’s guilt, given that there is no
other evidence against him.

Solution: (a) Let B be the event that a randomly selected person
in the town is B positive and G be the event that the arrested man is
guilty. We have PB = 0.085 and PG = 0.0001, the latter coming from
the assumption that there is one person in the entire town who is guilty.
We can also assume that P(B|G) = 1, since we know the blood type of
the guilty party. The prosecutor is trying to estimate the probability
P(G|B).

(b) The correct calculation is given by Bayes’s Rule:

P(G|B) = P(B|G)× P(G)

P(B)

= 1× 0.0001

0.085
≈ 0.0012

So, just a bit more than 0.1%. The prosecutor is making a base rate
falacy in forgetting the account for the very low prior chance that any
given individual is guilt, something that real-life prosecutor’s seem to
routinely have trouble understanding.


