Worksheet 09 (Solutions)

1. (Gambler's Ruin) We are going to play a game. Write down the integers 0 through 6 across the length of a piece of paper and place the white checker on the number 1. For reference, write "A" over the number 6 and "B" over the number 0 . The game consists of turns in which you roll a six-sided die and move the checker piece one space to the left if the number is a 1 or 2 and one space to the right if the roll is 3 or greater. ${ }^{1}$ Player A wins if the checker gets to the 6 th space and Player B wins if the checker gets to the 0th space. Use the black checker piece to keep track of the largest number reached during the game; it will be 6 if player A wins and less than 6 otherwise. Before you start, guess what the probability is that Player A will win. Then, play the game 10 times, recording the maximum square reached each time. When you are done add your results on the back whiteboard.

Solution: Your specific results will, of course, vary.
2. (Gambler's Ruin, cont.) Consider a generalization of the game you just played where the number of spots is $N+1$. We will write p_{i} to be the probability that Player A will win if the checker piece is currently on position i. (a) Write down a formula for the p_{i} in terms of p_{i-i} and p_{i+1}. (b) What are p_{0} and p_{N} ? Hint for (a): Condition on the outcome of the first round.

Solution: Let W be the event that A eventually wins if we start on the i th spot and let F be the event that A wins the first round. Then:

$$
\begin{aligned}
p_{i} & =\mathbb{P}(W \mid F) \mathbb{P} F+\mathbb{P}\left(W \mid F^{c}\right) \mathbb{P} F^{c} \\
& =\mathbb{P}(W \mid F) \cdot \frac{2}{3}+\mathbb{P}\left(W \mid F^{c}\right) \cdot \frac{1}{3} \\
& =p_{i+1} \cdot \frac{2}{3}+p_{i-1} \cdot \frac{1}{3}
\end{aligned}
$$

Where the last line comes from the fact that if F wins the first round, the probability of winning is equal to the probability of winning if we started on spot $i+1$, and likewise for lossing and starting on $i-1$.

We know that $p_{0}=0$ and $p_{N}=1$ since the game ends when we get to other spot.
3. (Gambler's Ruin, cont.) Assume that $N=3$. Write down an equation for p_{1} in terms of p_{2} and an equation of p_{2} in terms of p_{1}. Combine and solve.

[^0]Solution: Plugging into the previous equation, we have:

$$
\begin{aligned}
& p_{1}=p_{2} \cdot \frac{2}{3}+p_{0} \cdot \frac{1}{3}=p_{2} \cdot \frac{2}{3} \\
& p_{2}=p_{3} \cdot \frac{2}{3}+p_{1} \cdot \frac{1}{3}=\frac{2}{3}+p_{1} \cdot \frac{1}{3}
\end{aligned}
$$

Plugging the second into the first gives:

$$
\begin{aligned}
p_{1} & =p_{2} \cdot \frac{2}{3} \\
& =\left(\frac{2}{3}+p_{1} \cdot \frac{1}{3}\right) \times \frac{2}{3} \\
9 \cdot p_{1} & =4+p_{1} \cdot 2 \\
7 \cdot p_{1} & =4 \\
p_{1} & =\frac{4}{7} \approx 0.571
\end{aligned}
$$

And likewise, $p_{2} \approx 0.857$.
4. (Gambler's Ruin, cont.) Returning to the general N case, a recursive equation of the form $p_{i}=A p_{i+1}+B p_{i-1}$, where $A \neq B$ is called a difference equation. It has solutions of the form (it's a long calculation, but you can prove it using a recursive application of the technique in the previous question):

$$
p_{i}=C+D\left(\frac{B}{A}\right)^{i}
$$

For some constants C and D. Use the values of p_{0} and p_{N}, called the boundary conditions, to find the values of the constants and therefore a general formula for p_{i}. Does the equation match the simulated probability?

Solution: Our solution has this form with $A=\frac{2}{3}$ and $B=\frac{1}{3}$. So,

$$
p_{i}=C+D \cdot 0.5^{i}
$$

We have the two boundary conditions:

$$
\begin{aligned}
p_{0} & =C+D \cdot 0.5^{0}=0 \quad \Rightarrow \quad D=-C \\
p_{N} & =C+D \cdot 0.5^{N}=C \cdot\left(1-0.5^{N}\right)=1 \Rightarrow C=\frac{1}{1-0.5^{N}}
\end{aligned}
$$

Which gives:

$$
p_{i}=\frac{1-0.5^{i}}{1-0.5^{N}}
$$

Plugging this into our original question for $N=6$ and $i=1$ gives a probability just slightly greater than 0.5 . If you are curious, the full set of probabilities p_{i} are: $0.000,0.508,0.762,0.889,0.952,0.984,1.000$.
5. (Branching Process) Let's do one more problem of a similar type. Consider an amoeba that every minute either splits into two, dies, or does nothing, each with probability $1 / 3$. Let D be the event that the population of amoeba eventually dies out. Find $\mathbb{P} D$.

Solution: Consider the first minute. Let E_{0} be the event that the amoeba dies, E_{1} be the event that the amoeba does nothing, and E_{2} be the event that it splits into two. Then:

$$
\begin{aligned}
\mathbb{P}[D] & =\mathbb{P}\left[D \mid E_{0}\right] \cdot \mathbb{P}\left[E_{0}\right]+\mathbb{P}\left[D \mid E_{1}\right] \cdot \mathbb{P}\left[E_{1}\right]+\mathbb{P}\left[D \mid E_{2}\right] \cdot \mathbb{P}\left[E_{2}\right] \\
& =\frac{1}{3} \times\left[\mathbb{P}\left[D \mid E_{0}\right]+\mathbb{P}\left[D \mid E_{1}\right]+\mathbb{P}\left[D \mid E_{2}\right]\right]
\end{aligned}
$$

If the amoeba dies in the first step, the population must die out, so $\mathbb{P}\left[D \mid E_{0}\right]=1$. If nothing happens, then we are right back where we started and $\mathbb{P}\left[D \mid E_{0}\right]=\mathbb{P}[D]$. If the amoeba splits, then we can consider each of the children as their own independent sub-problem. The chance of each sub-line dying out is $\mathbb{P}[D]$; so the chance of at least one lasting is $\mathbb{P}[D]^{2}$. Plugging in we get:

$$
\mathbb{P}[D]=\frac{1}{3} \times\left[1+\mathbb{P}[D]+\mathbb{P}[D]^{2}\right]
$$

Setting $x=\mathbb{P}[D]$, we have a quadratic equation:

$$
\begin{aligned}
3 x & =1+x+x^{2} \\
0 & =1-2 x+x^{2} \\
0 & =(1-x)^{2}
\end{aligned}
$$

We see that the equation has a double root at $x=1$. So, the probability that the amoeba die out is 1 .

[^0]: ${ }^{1}$ You can play with a 12 -sided die by moving to the left with a 4 or fewer and right otherwise.

