Worksheet 10 (Solutions)

1. Let X be a random variable with the following probability mass function:

$$
p_{X}(x)= \begin{cases}0.6, & \text { if } x=1 \\ 0.2, & \text { if } x=2 \\ 0.2, & \text { if } x=3\end{cases}
$$

Find $\mathbb{E} X$.

Solution: The expected value is:

$$
\begin{aligned}
\mathbb{E} X & =0.6 \cdot 1+0.2 \cdot 2+0.2 \cdot 3 \\
& =1.6
\end{aligned}
$$

2. Consider flipping a four-sided die with sides 1-4. Let X be the outcome of rolling the die once, Y be the independent outcome of rolling the die a second time, and Z be the sum $X+Y$. (a) What are $\mathbb{E} X, \mathbb{E} Y$, and $\mathbb{E} Z$? (b) What is the pmf of X ? (c) Sketch the cdf of X.

Solution: (a) For the expected value, we have:

$$
\begin{aligned}
\mathbb{E} X & =\frac{1}{4} \cdot 1+\frac{1}{4} \cdot 2+\frac{1}{4} \cdot 3+\frac{1}{4} \cdot 4 \\
& =\frac{1+2+3+4}{4}=\frac{10}{4}=2.5
\end{aligned}
$$

The random variable Y has exactly the same density function and therefore has the same expected value. For Z, we have:

$$
\mathbb{E} Z=\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]=5
$$

(b) The pmf of X is given by $p_{X}(x)=1 / 4$ for all $x \in\{1,2,3,4\}$. Finally, the cdf of X is given by:

3. Let Y be a random variable with the following probability mass function: ${ }^{1}$

$$
p_{Y}(y)= \begin{cases}(1-a), & \text { if } y=0 \\ a, & \text { if } y=1\end{cases}
$$

For some $a \in[0,1]$. Find (a) $\mathbb{E} Y$ and (b) sketch the cdf $F_{Y}(y)$.
Solution: The (a) expected value is simply:

$$
\begin{aligned}
\mathbb{E} Y & =p(0) \cdot 0+p(1) \cdot 1 \\
& =a
\end{aligned}
$$

For (b), I am going to plot this in R using a specific value of $a=0.6$
${ }^{1}$ I change the variable names here to make this more clear.

In general, the y -axis will have a line at $1-a$ between the x -values of 0 and 1 . It will be 0 for smaller values and 1 for larger values.
4. Consider a sequence of N independent tosses of a fair coin. Let X_{1}, \ldots, X_{n} be a sequence of independent random variables such that X_{i} is 1 if the i th flip is heads and 0 if it comes up tails. Define $Z=\sum_{i=1}^{n} X_{i}$, which measures the total number of heads. (a) What is $\mathbb{E} Z$ (Hint: there is an easy way to do this)? (b) What is the pmf of Z ? (Hint: we have already done this!).

Solution: The expected value of each X_{i} is 0.5 , which we can write out as:

$$
\begin{aligned}
\mathbb{E} X & =\sum_{i} \mathbb{P}\left[X_{i}=x\right] \cdot x \\
& =\mathbb{P}\left[X_{i}=0\right] \cdot 0+\mathbb{P}\left[X_{i}=1\right] \cdot 1 \\
& =0+0.5 \cdot 1=0.5
\end{aligned}
$$

The expected value of Z is then:

$$
\mathbb{E} Z=\sum_{i} \mathbb{E} X_{i}=\sum_{i}(0.5)=(0.5) \cdot n=\frac{n}{2}
$$

The pmf comes from the combinatorial argument that we have done before. The probability of a specific sequence of 0 s and 1 s with $z 1 \mathrm{~s}$ is given by $\left.\left(\frac{1}{2}\right)^{z} \cdot\left(\frac{1}{2}\right)^{(} n-z\right)$. There are $\binom{n}{z}$ possible ways to get some sequence with $z 1$ s, and therefore the probability mass function is:

$$
\left.\mathbb{P}[Z=z]=\binom{n}{z} \times\left(\frac{1}{2}\right)^{z} \times\left(\frac{1}{2}\right)^{(} n-z\right)
$$

5. Consider flipping a fair coin until it comes up heads. Let X be a random variable equal to the number of flips that are made. Calculate (a) $p_{X}(1)$, (b) $p_{X}(2)$, and (c) $p_{X}(3)$. (d) Write a general formula for $p_{X}(n)$. (e) Write down the quantity $\mathbb{E} X$. Notice that the summation is difficult to simplify (you may leave it as is).

Solution: For (a-d) have the following formulas:

$$
\begin{aligned}
p_{X}(1) & =1 / 2 \\
p_{X}(2) & =(1 / 2)^{2} \\
p_{X}(3) & =(1 / 2)^{3} \\
\vdots & \\
p_{X}(n) & =(1 / 2)^{n}
\end{aligned}
$$

The (e) expected value is then given by:

$$
\mathbb{E} X=\sum_{i=1}^{\infty}(1 / 2)^{i} \cdot i
$$

We will see clever tricks for simplifying these in the next worksheet.
6. Let X be a random variable defined as follows:

$$
p_{X}(x)=\frac{1}{n}, \quad x \in\{1,2, \ldots, n\}
$$

Calculate $\mathbb{E} X$ and simplify the result.

Solution: The expected value is equal to:

$$
\begin{aligned}
\mathbb{E} X & =\sum_{i} p(i) \cdot i \\
& =\sum_{i=1}^{n} \frac{1}{n} \cdot i \\
& =\frac{1}{n} \cdot \sum_{i=1}^{n} i \\
& =\frac{1}{n} \cdot \frac{n \cdot(n+1)}{2} \\
& =\frac{n+1}{2}
\end{aligned}
$$

Using the formula for sum of the first n integers.

