Worksheet 13 (Solutions)

1. Let X and Y be independent random variables with the following probability mass functions:

$$
p_{X}(x)=\left\{\begin{array}{ll}
0.2, & \text { if } x=1 \\
0.5, & \text { if } x=2 \\
0.3, & \text { if } x=3
\end{array} \quad p_{Y}(y)= \begin{cases}0.7, & \text { if } y=1 \\
0.2, & \text { if } y=2 \\
0.1, & \text { if } y=3\end{cases}\right.
$$

For X, find the expected value, the variance and the moment generating function. Sketch the cdf of X. What are the expected value of Y and the expected value of $X+Y$?

Solution:

The expected value is:

$$
\begin{aligned}
\mathbb{E} X & =0.2 \cdot 1+0.5 \cdot 2+0.3 \cdot 3 \\
& =2.1
\end{aligned}
$$

To get the variance, we first get the second raw moment:

$$
\begin{aligned}
\mathbb{E} X^{2} & =0.2 \cdot 1^{2}+0.5 \cdot 2^{2}+0.3 \cdot 3^{2} \\
& =4.9
\end{aligned}
$$

Which gives the variance as:

$$
\begin{aligned}
\operatorname{Var}(X) & =\mathbb{E} X^{2}-[\mathbb{E} X]^{2} \\
& =4.9-2.1^{2}=0.49
\end{aligned}
$$

The moment generating function is the expected value of $e^{t X}$. It does not have a fancy form here; it is just a sum of three elements:

$$
\begin{aligned}
\mathbb{E}\left[e^{t X}\right] & =\sum_{x} \mathbb{P}[X=x] \cdot e^{t x} \\
& =0.2 \cdot e^{t}+0.5 \cdot e^{2 t}+0.3 \cdot e^{3 t}
\end{aligned}
$$

The CDF is just a step function with jumps at 1,2 , and 3 , where the jump sizes are equal to the probabilities. This gives step values of 0 on $(-\infty, 1), 0.2$ on $[1,2), 0.7$ on $[2,3)$ and 1 for $[3, \infty)$.

The expected value of Y is:

$$
\begin{aligned}
\mathbb{E} Y & =0.7 \cdot 1+0.2 \cdot 2+0.1 \cdot 3 \\
& =1.4
\end{aligned}
$$

And so, the expected value of $X+Y$ is:

$$
\mathbb{E}(X+Y)=\mathbb{E}(X)+\mathbb{E}(Y)=2.1+1.4=3.5
$$

2. Let X and Y be defined as in the previous question. Let $Z=$ $\max (X, Y)$. Write the pmf and sketch the cdf of $Z .{ }^{1}$

Solution:

The pmf is given by:
${ }^{1}$ In general, you need to work out all
nine possible combinations of X and
Y. A shortcut is to realize that you
don't need to figure out the mass at 3
directly since it is one minus the mass
at 1 and 2.

$$
\begin{aligned}
\mathbb{P}[Z=1] & =\mathbb{P}[(X=1) \cap(Y=1)]=0.2 \cdot 0.7=0.14 \\
\mathbb{P}[Z=2] & =\mathbb{P}[(X=1) \cap(Y=2)]+\mathbb{P}[(X=2) \cap(Y=1)]+\mathbb{P}[(X=2) \cap(Y=2)] \\
& =0.2 \cdot 0.2+0.5 \cdot 0.7+0.5 \cdot 0.2=0.49 \\
\mathbb{P}[Z=3] & =1-\mathbb{P}[Z=1]-\mathbb{P}[Z=2]=1-0.14-0.49=0.37
\end{aligned}
$$

The cdf again is just a step function with jumps at 1,2 , and 3 where the size of the jump is given by the probability.
3. Let $X_{1}, X_{2} \stackrel{\text { i.i.d. }}{\sim} \operatorname{Bernoulli}(p)$ be an infinite sequence of independent random variables. We say that Y follows the silly geometric distribution if Y counts the number of X_{i} 's that are zero before the first X_{i} that is a one. What are the pmf, expected value, and variance of $Y ?^{2}$

Solution: This is just a different parameterization of the geometric distribution, where the silly geometric is one less than the normal geometric (the normal one counts the last 1 in the tally). The pmf is the same but with y in place of $x-1$ from the value in the table. You could also re-derive it from the counting rules (what the probability of y zeros followed by a one).

$$
\mathbb{P}[Y=y]=(1-p)^{y} p
$$

In terms of the random variable, it will have an expected value 1 less from the normal geometric and the same variance (linear shifts do not affect the variance). Formally, if $T \sim \operatorname{Geom}(p)$, then we could write Y in terms of T as $Y=T-1$. Then:

$$
\begin{aligned}
\mathbb{E}[Y] & =\mathbb{E}[T-1]=\frac{1}{p}-1=\frac{1-p}{p} \\
\operatorname{Var}[Y] & =\operatorname{Var}[T-1]=\frac{1-p}{p^{2}}
\end{aligned}
$$

Where the values for the expected value and variance of Y come from the table of distributions.
4. Let X_{1}, \ldots, X_{n} a sequence of independent random variables where each X_{i} has a probability equal to $1 / 2$ of being +1 and probability of $1 / 2$ of being -1 . Let W be the sum of the X_{i} 's. What are the expected value and variance of W ?

Solution: There are number of different approaches here. Probably the easiest is to find the expected value and variance and X_{i} (they are all the same) using the approach from question one. We have:

$$
\begin{aligned}
\mathbb{E} X_{i} & =(1) \cdot 0.5+(-1) \cdot 0.5=0 \\
\mathbb{E} X_{i}^{2} & =(1)^{2} \cdot 0.5+(-1)^{2} \cdot 0.5=1 \\
\operatorname{Var}\left(X_{i}\right) & =\mathbb{E} X_{i}^{2}-\left[\mathbb{E} X_{i}\right]^{2}=1-0=1
\end{aligned}
$$

Then, we see:

$$
\begin{aligned}
\mathbb{E} W & =\mathbb{E} \sum_{i=1}^{n} X_{i}=\sum_{i=1}^{n} \mathbb{E} X_{i}=0 \\
\operatorname{Var}(W) & =\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)=\sum_{i=1}^{n}(1)=n
\end{aligned}
$$

5. Let $X \sim \operatorname{Bin}(n, p)$ and $Y=X / n$. Find the expected value and variance of Y. What are the limits of these two quantities as $n \rightarrow \infty$?

Solution: The expected value is just:

$$
\begin{aligned}
\mathbb{E} Y & =\mathbb{E}(X / n) \\
& =\frac{1}{n} \cdot \mathbb{E} X \\
& =\frac{n p}{n} \\
& =p
\end{aligned}
$$

And, using the previous result from (1), the variance is just:

$$
\begin{aligned}
\operatorname{Var}(Y) & =\operatorname{Var}(X / n) \\
& =\frac{1}{n^{2}} \operatorname{Var}(X) \\
& =\frac{n p \cdot(1-p)}{n^{2}} \\
& =\frac{p \cdot(1-p)}{n}
\end{aligned}
$$

In the limit, the expected value goes to p and the variance goes to zero. So, with a large sample size, the number of successes limits to p, which makes quite a lot of sense.
6. Four plots of probability mass functions are given on the following page. The Binomial shows the whole pmf; the others truncate the values
for larger x. Estimate as best as possible the unknown parameters for each of the four distributions. Hint: You can use the range of the data to figure out one of the parameters for the two-parameter distributions. The mode is a good way to estimate the value of p for the Binomial. For the others, pick one value of the pmf and solve given the pmf formula.

Solution: For the geometric, we just use the first value. The pmf of 1 is always p; here the pmf is 0.2 so therefore $p=0.2$.

The smallest possible value for the negative binomial is k, so we know that $k=3$ in this case. The smallest value of the negative binomial is always p^{k}. Here the smallest value is about 0.065 and therefore $p \approx$ $(0.065)^{1 / 3} \approx 0.402$. I actually used a value of 0.4 , but anything with this kind of logic is fine.

Exact same logic with the Poisson. The value at zero is always $e^{-\lambda}$. It looks like this is about .14 and therefore $\lambda \approx-\log (.14) \approx 1.96$. The actual value is 2 ; anything remotely close that uses this approach is fine.

We cannot use the same trick from the others because it this one has no scale on the y-axis. The binomial distribution has a positive pmf on the integers 0 through n. Given that the plot goes from 0 to 10 , we can deduce that $n=10$. The binomial also will have its mode (most
frequent value) at $n p$ (it's mean) rounded to the nearest integer. Since the tallest peak is at 4 , this means that p must be between .35 and .45 . Anything in that range is fine; a guess of 0.4 would be most natural (and is the one that I used).

