Worksheet 15 (Solutions)

1. Let $X \sim N\left(\mu, \sigma^{2}\right)$. Show that $\mathbb{E}(X)$ is equal to μ using the moment generating function.

Solution: See solution to the next question.
2. Let $X \sim N\left(\mu, \sigma^{2}\right)$. Show that $\operatorname{Var}(X)$ is equal to σ^{2} using the moment generating function.

Solution: The solution for both 2 and 3 are given by taking the derivatives of the moment generating function for $X \sim N\left(\mu, \sigma^{2}\right)$:

$$
\begin{aligned}
\frac{\partial}{\partial t} m_{X}(t) & =\left(\mu+\sigma^{2} t\right) \cdot e^{\mu t+\sigma^{2} t^{2} / 2} \\
\frac{\partial^{2}}{\partial^{2} t} m_{X}(t) & =\left(\mu+\sigma^{2} t\right)^{2} \cdot e^{\mu t+\sigma^{2} t^{2} / 2}+\left(\sigma^{2}\right) \cdot e^{\mu t+\sigma^{2} t^{2} / 2}
\end{aligned}
$$

Which gives:

$$
\begin{aligned}
\mathbb{E} X & =\mu \\
\mathbb{E} X^{2} & =\mu^{2}+\sigma^{2} \\
\operatorname{Var}(X) & =\mathbb{E} X^{2}-[\mathbb{E} X]^{2}=\sigma^{2}
\end{aligned}
$$

3. Let $X \sim N\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $Y \sim N\left(\mu_{2}, \sigma_{2}^{2}\right)$ be independent random variables. Let $W=X+Y$. Show that W, as defined above, is a normally distributed random variable. Find its mean and variance. Hint: Use the moment generating function.

Solution: We know that the moment generating function of W is the product of the moment generating functions of X and Y :

$$
\begin{aligned}
m_{W}(t) & =m_{X}(t) \cdot m_{Y}(t) \\
& =e^{\mu_{1} t+\frac{1}{2} \cdot \sigma_{1}^{2} t^{2}} \cdot e^{\mu_{2} t+\frac{1}{2} \cdot \sigma_{2}^{2} t^{2}} \\
& =e^{\left(\mu_{1}+\mu_{2}\right) t+\frac{1}{2} \cdot\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right) t^{2}}
\end{aligned}
$$

This is the mgf of a normal distribution with mean $\mu_{1}+\mu_{2}$ and variance $\sigma_{1}^{2}+\sigma_{2}^{2}$. By the uniqueness theorem we have $W \sim N\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)$.
4. Let $X=\mu+\sigma Z$ where $Z \sim N(0,1)$. Show that $X \sim N\left(\mu, \sigma^{2}\right)$.

Hint: moment generating function!

Solution: We know that:

$$
\begin{aligned}
m_{X}(t) & =e^{\mu t} m_{Z}(\sigma t) \\
& =e^{\mu t} \cdot e^{(\sigma t)^{2} / 2} \\
& =e^{\mu t+t^{2} \sigma^{2} / 2}
\end{aligned}
$$

Which completes the result.
5. Let $X \sim N(3,5)$. Write the probability $\mathbb{P}[X>10]$ as a function of Φ.

Solution: From the previous question, we know that we can write $X=3+\sqrt{5} Z$. So, we have:

$$
\begin{aligned}
\mathbb{P}[X>10] & =\mathbb{P}[(3+\sqrt{5} Z)>10] \\
& =\mathbb{P}[\sqrt{5} Z>7] \\
& =\mathbb{P}[Z>7 / \text { sqrt } 5] \\
& =1-\mathbb{P}[Z<7 / \text { sqrt } 5] \\
& =1-\Phi[7 / \text { sqrt } 5] \approx 0.9991274 .
\end{aligned}
$$

6. (\star) Let $X \sim N(0,1)$. Show that the moment generating function $m_{X}(t)$ is equal to $e^{t^{2} / 2}$. The full form on the handout follows from the other results established above.

Solution: By definition:

$$
\begin{aligned}
m_{X}(t) & =\int_{-\infty}^{\infty} e^{t x} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x \\
& =\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2+x t} d x \\
& =\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\left(z^{2}-2 z t+t^{2}-t^{2}\right)} d x \\
& =\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-(z-t)^{2} / 2+t^{2} / 2} d x \\
& =e^{t^{2} / 2} \cdot \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-(z-t)^{2} / 2} d x \\
& =e^{t^{2} / 2}
\end{aligned}
$$

The last step comes because the integral is the density of a $N(t, 1)$ distributed random variable. The algebraic manipulations in the exponent
comes from an application of completing the square.

