Worksheet 19 (Solutions)

1. Let $Z \sim N(0,1)$. It can be shown that $\mathbb{E}|Z|=\sqrt{2 / \pi}$. Use Markov's inequality to bound the probabilities: (a) $\mathbb{P}[|Z|>1.28]$, (b) $\mathbb{P}[|Z|>1.96]$, (c) $\mathbb{P}[|Z|>2.58]$, and (d) $\mathbb{P}[|Z|>3.89]$. Compare these to the exact quantities on the handout.

Solution:

This is quite straightforward:

$$
\begin{aligned}
& \mathbb{P}[|Z| \geq 1.28] \leq \frac{\sqrt{2 / \pi}}{1.28} \approx 0.623 \\
& \mathbb{P}[|Z| \geq 1.96] \leq \frac{\sqrt{2 / \pi}}{1.96} \approx 0.407 \\
& \mathbb{P}[|Z| \geq 2.58] \leq \frac{\sqrt{2 / \pi}}{2.58} \approx 0.309 \\
& \mathbb{P}[|Z| \geq 3.89] \leq \frac{\sqrt{2 / \pi}}{3.89} \approx 0.205
\end{aligned}
$$

So, these are decreasing much (much) slower than the exact values.
2. Chebychev's inequality (see the reference sheet) can be derived directly from Markov's inequality. Let X be a random variable with mean μ and variance σ^{2}. Define $Y=(X-\mathbb{E} X)^{2}$ and apply Markov's inequality with $X \rightarrow Y$ and $a \rightarrow a^{2}$ (remember, a can be any positive constant so we can replace it with a squared version of itself if we do so on both sides). Plug the value of Y back in, use the definition of variance, and simplify to derive Chebychev's inequality

Solution: Apply Markov's Inequality with $X \rightarrow Y$ and $a \rightarrow a^{2}$ and then plugging back the value for Y yields:

$$
\begin{aligned}
\mathbb{P}\left[|Y|>a^{2}\right] & \leq \frac{\mathbb{E}|Y|}{a^{2}} \\
\mathbb{P}\left[(X-\mathbb{E} X)^{2}>a^{2}\right] & \leq \frac{\mathbb{E}(X-\mathbb{E} X)^{2}}{a^{2}} \\
\mathbb{P}\left[(X-\mu)^{2}>a^{2}\right] & \leq \frac{\sigma^{2}}{a^{2}}
\end{aligned}
$$

Taking the square root of both sides inside the probability gives:

$$
\mathbb{P}[|X-\mu|>a] \leq \frac{\sigma^{2}}{a^{2}}
$$

And that's all we need for Chebychev's inequality.
3. Let $Z \sim N(0,1)$. Use Chebychev's inequality to bound the probabilities: (a) $\mathbb{P}[|Z|>1.28]$, (b) $\mathbb{P}[|Z|>1.96]$, (c) $\mathbb{P}[|Z|>2.58]$, (d)
$\mathbb{P}[|Z|>3.89]$. Compare these to the previous results. Which ones are tighter?

Solution:

This is quite straightforward as well:

$$
\begin{aligned}
& \mathbb{P}[|Z| \geq 1.28] \leq \frac{1}{1.28^{2}} \approx 0.610 \\
& \mathbb{P}[|Z| \geq 1.96] \leq \frac{1}{1.96^{2}} \approx 0.260 \\
& \mathbb{P}[|Z| \geq 2.58] \leq \frac{1}{2.58^{2}} \approx 0.150 \\
& \mathbb{P}[|Z| \geq 3.89] \leq \frac{1}{3.89^{2}} \approx 0.066
\end{aligned}
$$

These are tighter bounds than Markov gives, particularly for the last two. But, they are still quite a ways away from the exact values.
4. Chernoff's inequality (see the reference sheet) can also be derived directly from Markov's inequality. Let X be a random variable with a well-defined moment generating function. Apply Markov's inequality with $|X| \rightarrow e^{t X}$ (the new value is also positive, so no need for absolute value) and $a \rightarrow e^{t a}$. Simplify the part inside of the probability on the left-hand side to derive Chernoff's inequality.

Solution: Apply Markov's Inequality with $|X| \rightarrow e^{t X}$ and $a \rightarrow e^{t a}$ yields:

$$
\mathbb{P}\left[e^{t X}>e^{t a}\right] \leq \frac{\mathbb{E} e^{t X}}{e^{t a}}
$$

Taking the log of both sides in the interior of the probabilty gives:

$$
\begin{aligned}
\mathbb{P}[t X>t a] & \leq \frac{\mathbb{E} e^{t X}}{e^{t a}} \\
\mathbb{P}[X>a] & \leq \frac{\mathbb{E} e^{t X}}{e^{t a}}
\end{aligned}
$$

And that's Chernoff's inequality as written on the worksheet.
5. Chernoff's inequality has an extra term in it, the t, that provides a whole family of bounds for a given value of a. The tightest bound depends on the distribution. Let $Z \sim N(0,1)$. Using the moment generating function, what value of t provides the tightest bound on $\mathbb{E}[Z \geq a]$?

Solution: Plugging in the moment generating function, we have the following bound of Z :

$$
\begin{aligned}
\mathbb{P}[X>a] & \leq \frac{\mathbb{E} e^{t X}}{e^{t a}} \\
& \leq \frac{e^{\frac{1}{2} t^{2}}}{e^{t a}}=e^{\frac{1}{2} t^{2}-t a}
\end{aligned}
$$

The quantity on the right will be minimized by the value in the exponent $\left(\frac{1}{2} t^{2}-t a\right)$ is minimized. This is a quadratic polynomial; taking the derivative and setting it equal to 0 gives $t=a$ at the minimum, which has the following final bound on the tail probability from Chernoff's inequality for a standard normal Z :

$$
\mathbb{P}[X>a] \leq e^{-\frac{1}{2} a^{2}} .
$$

That turns out to be the correct limiting distribution of the tail of a normal.
6. Let $Z \sim N(0,1)$. Use Chernoff's inequality (and the tightest value of t from the previous question) to compute bounds on the following: (a) $\mathbb{P}[|Z|>1.28]$, (b) $\mathbb{P}[|Z|>1.96]$, (c) $\mathbb{P}[|Z|>2.58]$, and (d) $\mathbb{P}[|Z|>3.89]$. Note that due to the symmetry of the normal distribution, you can double the probability that Z is larger than some a to get the probability that $|Z|$ is larger than a. You should notice an interesting pattern relative to the other bounds that we have.

Solution:

This is quite straightforward as well:

$$
\begin{aligned}
& \mathbb{P}[|Z| \geq 1.28] \leq 2 \times e^{-\frac{1}{2}(1.28)^{2}} \approx 0.882 \\
& \mathbb{P}[|Z| \geq 1.96] \leq 2 \times e^{-\frac{1}{2}(1.96)^{2}} \approx 0.293 \\
& \mathbb{P}[|Z| \geq 2.58] \leq 2 \times e^{-\frac{1}{2}(2.58)^{2}} \approx 0.072 \\
& \mathbb{P}[|Z| \geq 2.58] \leq 2 \times e^{-\frac{1}{2}(3.89)^{2}} \approx 0.001
\end{aligned}
$$

The first is much more than even the basic Markov bound. The second is better than the Markov bound and just a little worse than Chebyshev. The third, and particularly the fourth, are much better than the previous bounds.
7. (Weak Law of Large Numbers) Let's finish with a result that shows the power of these tail inequalities for establishing theoretical results. Let X_{1}, X_{2}, \ldots be a sequence of i.i.d. random variables that come from a distribution with finite mean μ and finite variance σ^{2}. For any positive n, define the sample mean to be:

$$
\bar{X}_{n}=\frac{X_{1}+\cdots+X_{n}}{n}
$$

Then, for any $\epsilon>0$:

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\left|\bar{X}_{n}-\mu\right|>\epsilon\right)=0 .
$$

Prove that this is true using Chebyshev's inequality. Hint: Compute the mean and variance of \bar{X}_{n} and then just apply the theorem as-is.

Solution: The mean and variance of \bar{X}_{n} are:

$$
\begin{aligned}
\mathbb{E} \bar{X}_{n} & =\frac{1}{n} \sum_{i} \mathbb{E} X_{i}=\frac{1}{n} \times n \cdot \mu=\mu \\
\operatorname{Var} \bar{X}_{n} & =\frac{1}{n^{2}} \sum_{i} \operatorname{Var}\left(X_{i}\right)=\frac{1}{n^{2}} \times n \cdot \sigma^{2}=\sigma^{2} / n
\end{aligned}
$$

Plugging these into Chebyshev's inequality with $a=\epsilon$, we get:

$$
\mathbb{P}\left[\left|\bar{X}_{n}-\mu\right|>\epsilon\right] \leq \frac{\sigma^{2} / n}{\epsilon^{2}}
$$

Notice that the limit of the right-hand side will go towards zero for a sufficently large n, and therefore we have proved the Weak Law of Large Numbers as stated in the question.

