Worksheet 10

1. Let X be a random variable with the following probability mass function:

$$
p_{X}(x)= \begin{cases}0.6, & \text { if } x=1 \\ 0.2, & \text { if } x=2 \\ 0.2, & \text { if } x=3\end{cases}
$$

Find $\mathbb{E} X$.
2. Consider flipping a four-sided die with sides 1-4. Let X be the outcome of rolling the die once, Y be the independent outcome of rolling the die a second time, and Z be the sum $X+Y$. (a) What are $\mathbb{E} X, \mathbb{E} Y$, and $\mathbb{E} Z$? (b) What is the pmf of X ? (c) Sketch the cdf of X.
3. Let Y be a random variable with the following probability mass function: ${ }^{1}$

$$
p_{Y}(y)= \begin{cases}(1-a), & \text { if } y=0 \\ a, & \text { if } y=1\end{cases}
$$

For some $a \in[0,1]$. Find (a) $\mathbb{E} Y$ and (b) sketch the cdf $F_{Y}(y)$.
4. Consider a sequence of N independent tosses of a fair coin. Let X_{1}, \ldots, X_{n} be a sequence of independent random variables such that X_{i} is 1 if the i th flip is heads and 0 if it comes up tails. Define $Z=\sum_{i=1}^{n} X_{i}$, which measures the total number of heads. (a) What is $\mathbb{E} Z$ (Hint: there is an easy way to do this)? (b) What is the pmf of Z ? (Hint: we have already done this!).
5. Consider flipping a fair coin until it comes up heads. Let X be a random variable equal to the number of flips that are made. Calculate (a) $p_{X}(1)$, (b) $p_{X}(2)$, and (c) $p_{X}(3)$. (d) Write a general formula for $p_{X}(n)$. (e) Write down the quantity $\mathbb{E} X$. Notice that the summation is difficult to simplify (you may leave it as is).
6. Let X be a random variable defined as follows:

$$
p_{X}(x)=\frac{1}{n}, \quad x \in\{1,2, \ldots, n\}
$$

Calculate $\mathbb{E} X$ and simplify the result.

[^0]
[^0]: ${ }^{1}$ I change the variable names here to make this more clear.

