Worksheet 13

1. Let X and Y be independent random variables with the following probability mass functions:

$$
p_{X}(x)=\left\{\begin{array}{ll}
0.2, & \text { if } x=1 \\
0.5, & \text { if } x=2 \\
0.3, & \text { if } x=3
\end{array} \quad p_{Y}(y)= \begin{cases}0.7, & \text { if } y=1 \\
0.2, & \text { if } y=2 \\
0.1, & \text { if } y=3\end{cases}\right.
$$

For X, find the expected value, the variance and the moment generating function. Sketch the cdf of X. What are the expected value of Y and the expected value of $X+Y$?
2. Let X and Y be defined as in the previous question. Let $Z=$ $\max (X, Y)$. Write the pmf and sketch the cdf of $Z .{ }^{1}$
3. Let $X_{1}, X_{2} \stackrel{\text { i.i.d. }}{\sim} \operatorname{Bernoulli}(p)$ be an infinite sequence of independent random variables. We say that Y follows the silly geometric distribution if Y counts the number of X_{i} 's that are zero before the first X_{i} that is a one. What are the pmf, expected value, and variance of $Y ?^{2}$
4. Let X_{1}, \ldots, X_{n} a sequence of independent random variables where each X_{i} has a probability equal to $1 / 2$ of being +1 and probability of $1 / 2$ of being -1 . Let W be the sum of the X_{i} 's. What are the expected value and variance of W ?
5. Let $X \sim \operatorname{Bin}(n, p)$ and $Y=X / n$. Find the expected value and variance of Y. What are the limits of these two quantities as $n \rightarrow \infty$?
6. Four plots of probability mass functions are given on the following page. The Binomial shows the whole pmf; the others truncate the values for larger x. Estimate as best as possible the unknown parameters for each of the four distributions. Hint: You can use the range of the data to figure out one of the parameters for the two-parameter distributions. The mode is a good way to estimate the value of p for the Binomial. For the others, pick one value of the pmf and solve given the pmf formula.
${ }^{1}$ In general, you need to work out all nine possible combinations of X and Y. A shortcut is to realize that you don't need to figure out the mass at 3 directly since it is one minus the mass at 1 and 2 .
${ }^{2}$ For this and two following questions, the trick is to write the variable of interest in terms of a known distribution.

