Worksheet 18

1. The uniform distrbution $U(a, b)$ has a constant pdf equal to ($b-$ $a)^{-1}$ between $a<b$ and equal to 0 otherwise. Let $U \sim U(0,1)$ and define $Y=U^{2}$. Find the PDF of Y and determine what distribution (it is one that we have studies already) it comes from. Hint: Remember to write the final equation in terms of y.
2. Let $U \sim U(0,1)$ and define $Y=U^{1 / 2}$. Find the PDF of Y and determine what distribution (it is one that we have studies already) it comes from.
3. Let $Z \sim N(0,1)$ and consider the random variable $Y \sim Z^{2}$. We cannot directly apply the change of variables formula because $g(z)=$ z^{2} is not a one-to-one function (it maps positive numbers to the same number as a negative number). We can fix this by considering a random variable $X=|Z|$ and then defining Y to (equivalently) be equal to X^{2}. The density of X is just twice the density of a standard normal, but only for positive values of x :

$$
f(x)=\frac{\sqrt{2}}{\sqrt{\pi}} e^{-x^{2} / 2}, \quad x>0
$$

Use the change of variables formula to derive the density of Y, which we will call χ_{1}^{2} as on the handout.
4. The value of $\Gamma(1 / 2)$ is equal to $\sqrt{\pi}$. Use this fact to manipulate the density you have in the previous question, which we called χ_{1}^{2}, is also a form of the Gamma distribution.
5. Let $Z_{1}, \ldots, Z_{n} \stackrel{\text { i.i.d. }}{\sim} N(0,1)$. If we have $Y=\sum_{i} Z_{i}^{2}$, then we say that Y follows a chi-squared distribution with k degrees of freedom. We write this as $Y \sim \chi_{k}^{2}$. Using the results from the previous two questions, (a) what is another name for this distribution? (b) What are the mean, variance, and mfg of Y ? Hint: The second part should be easy.
6. Let $U \sim U\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ be a random variable. Define $T=\tan (U)$. Use the change of variable formula to determine the form of the pdf of $T .{ }^{1}$ We have not seen this distribution before. It is called the (standard) Cauchy distribution, and is included on the reference sheet. It is a very interesting distribution because it has no defined mean or variance.
7. There is also a two-dimensional change of variables formula. It's not difficult to write-out, but solving it can get messy. It can be used to derive, for example, for independent $U_{1} \sim \chi_{k_{1}}^{2}$ and $U_{2} \sim \chi_{k_{2}}^{2}$ the
${ }^{1}$ The derivative of $\tan ^{-1}(t)$ is $1 /(1+$ t^{2}).
distribution of $F=\frac{U_{1} / k_{1}}{U_{2} / k_{2}}$. This is called the F-distribution. Or, for an independent $Z \sim N(0,1)$ and $U \sim \chi_{k}^{2}$, the distribution of $T=\frac{Z}{\sqrt{U / k}}$. This is called the Student-T distribution. These are both important distrbutions in statistics, but the derivations are quite messy. What is an adjective describing how happy you are not to have to derive them?

