Worksheet 19

1. Let $Z \sim N(0,1)$. It can be shown that $\mathbb{E}|Z|=\sqrt{2 / \pi}$. Use Markov's inequality to bound the probabilities: (a) $\mathbb{P}[|Z|>1.28]$, (b) $\mathbb{P}[|Z|>1.96]$, (c) $\mathbb{P}[|Z|>2.58]$, and (d) $\mathbb{P}[|Z|>3.89]$. Compare these to the exact quantities on the handout.
2. Chebychev's inequality (see the reference sheet) can be derived directly from Markov's inequality. Let X be a random variable with mean μ and variance σ^{2}. Define $Y=(X-\mathbb{E} X)^{2}$ and apply Markov's inequality with $X \rightarrow Y$ and $a \rightarrow a^{2}$ (remember, a can be any positive constant so we can replace it with a squared version of itself if we do so on both sides). Plug the value of Y back in, use the definition of variance, and simplify to derive Chebychev's inequality
3. Let $Z \sim N(0,1)$. Use Chebychev's inequality to bound the probabilities: (a) $\mathbb{P}[|Z|>1.28]$, (b) $\mathbb{P}[|Z|>1.96]$, (c) $\mathbb{P}[|Z|>2.58]$, (d) $\mathbb{P}[|Z|>3.89]$. Compare these to the previous results. Which ones are tighter?
4. Chernoff's inequality (see the reference sheet) can also be derived directly from Markov's inequality. Let X be a random variable with a well-defined moment generating function. Apply Markov's inequality with $|X| \rightarrow e^{t X}$ (the new value is also positive, so no need for absolute value) and $a \rightarrow e^{t a}$. Simplify the part inside of the probability on the left-hand side to derive Chernoff's inequality.
5. Chernoff's inequality has an extra term in it, the t, that provides a whole family of bounds for a given value of a. The tightest bound depends on the distribution. Let $Z \sim N(0,1)$. Using the moment generating function, what value of t provides the tightest bound on $\mathbb{E}[Z \geq a]$?
6. Let $Z \sim N(0,1)$. Use Chernoff's inequality (and the tightest value of t from the previous question) to compute bounds on the following: (a) $\mathbb{P}[|Z|>1.28]$, (b) $\mathbb{P}[|Z|>1.96]$, (c) $\mathbb{P}[|Z|>2.58]$, and (d) $\mathbb{P}[|Z|>3.89]$. Note that due to the symmetry of the normal distribution, you can double the probability that Z is larger than some a to get the probability that $|Z|$ is larger than a. You should notice an interesting pattern relative to the other bounds that we have.
7. (Weak Law of Large Numbers) Let's finish with a result that shows the power of these tail inequalities for establishing theoretical results. Let X_{1}, X_{2}, \ldots be a sequence of i.i.d. random variables that come from a distribution with finite mean μ and finite variance σ^{2}. For any positive
n, define the sample mean to be:

$$
\bar{X}_{n}=\frac{X_{1}+\cdots+X_{n}}{n}
$$

Then, for any $\epsilon>0$:

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\left|\bar{X}_{n}-\mu\right|>\epsilon\right)=0
$$

Prove that this is true using Chebyshev's inequality. Hint: Compute the mean and variance of \bar{X}_{n} and then just apply the theorem as-is.

