Worksheet 20

1. Throughout this worksheet, let X_{1}, \ldots, X_{n} be a sequence of n i.i.d. continous random variables that have a pdf $f(x)$ and a cdf $F(x)$. Define the random variables Y_{1}, \ldots, Y_{n} to be the corresponding order statistics, each with a pdf $\left(g_{j}(y)\right)$ and cdfs $\left(G_{j}(y)\right)$. Write down $G_{n}(y)$-the cdf of the maximum value - in terms of n and F. Hint: Write out the problem with probabilities before converting to the cdf.
2. In the next few questions, we will work on the density function $g_{k}(y)$ for an arbitrary k. To start, fix a value y and a positive value Δ. What is the joint probability that X_{1}, \ldots, X_{k-1} are all less than y, that X_{k+1}, \ldots, X_{n} are all greater than $y+\Delta$, and that X_{k} is in the interval $[y, y+\Delta] ?$
3. We are back to another counting question! The probability you have in the previous question counts only one specific configuration of the values X_{j} that would result in Y_{k} being in the interval $[y, y+\Delta]$. In general, we could have any set of $k-1$ of the n random variables be less than y, one of the random variables be in the interval $[y, y+\Delta]$, and the rest of the $n-k$ be somewhere greater than $y+\Delta$. (a) How many different configurations are there? (b) What is the probability that Y_{k} is in the interval $[y, y+\Delta] ?^{1}$
4. One way, if it exists, to define the pdf of a random variable Y is:

$$
f_{Y}(y)=\lim _{\Delta \rightarrow 0}\left[\frac{1}{\Delta} \times \mathbb{P}[Y \in[y, y+\Delta]]\right]=\lim _{\Delta \rightarrow 0}\left[\frac{F_{Y}(y+\Delta)-F_{Y}(y)}{\Delta}\right]
$$

Where F_{Y} is the cdf. This comes directly from the fundamental theorem of calculus and the definition of the relationship between the cdf and the pdf. Use this to compute the pdf $g_{k}(y)$ of the k-th order statistic Y_{k}. Your answer should be in terms of factorials using only y, k, n, F and f.
5. Let's apply this definition to a special case. Let $X_{1}, \ldots, X_{n} \stackrel{\text { i.i.d. }}{\sim}$ $U(0,1)$. For any $y \in(0,1)$, write down a formula for $F(y)$. Hint: This is easy.
6. Now, write down pdf of the density function $g_{k}(y)$ for $y \in(0,1)$ when the X_{j} 's come from a standard uniform distribution? We will simplify this in the next question.
7. Recall Gamma function has the property that $\Gamma(n)=(n-1)$! for any integer n. Write your previous question in terms of the Gamma
${ }^{1}$ Technically you are computing the probability that Y_{k} is in this interval and Y_{k+1} is not. The difference between these will limit to zero in the next question.
function.
8. Set $\alpha=k$ and $\beta=n-k+1$ and plug into the solution from the previous question. What is the name for the distribution of the k-th order statistic Y_{k} from a set of independent random variables from the standard uniform distribution?
9. Let's end with a even more concrete example. Let $X_{1}, X_{2}, X_{3}, X_{4} \stackrel{\text { i.i.d. }}{\sim}$
$U(0,1)$. What are the expected values of the four order statistics $Y_{1}, Y_{2}, Y_{3}, Y_{4}$?

