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Probability Theory Review

This handout includes a review of concepts from probability theory
that we will make use of this semester. Along with the distribution
handout, these should cover (almost) everything you need to know
for DSST330. Note that only the information in the random variables
sections below will be actively used in the first unit of the course, so
focus on reviewing that section for now.

PROBABILITY SPACES
A probability function P defined over a set S called the sample space
associates a number between 0 and 1 to subsets A ⊂ S, known as
events, with the following properties:

1. P[S] = 1.

2. For every pair of events A and B such that A ∩ B = ∅, called mu-
tually exclusive events, we have:

P (A ∪ B) = PA + PB.

The pair (S, P) is called a probability space.
Let A and B be events from a sample space S such that P(B) >

0. The conditional probability of A given B is written P(A|B) and
defined as:

P(A|B) = P(A ∩ B)
P(B)

.

A set of events are called (mutually) independent if the probabil-
ity of their intersection is equal to the product of their individual
probabilities. In particular, two events A and B are independent if
P(A ∩ B) = P(A) · P(B).

RANDOM VARIABLES
A random variable X is a mapping from a sample space into the real
numbers.1 We can describe a random variable through the cumulative 1 We could write a random variable as

f (s) or X(s), but almost always avoid
the function notation in favor of capital
letters.

distribution function (cdf), given by:

FX(x) = P[X ≤ x], x ∈ R.

If the cdf is a step function, we say that X is a discrete random variable.
We say that X is a continuous random variable if the cdf is continuous.
For a discrete random variable we can define the probability mass
function (pmf) pX(x) by:

pX(x) = P[X = x].
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We can drop the subscript when it is clear what random variable we
are writing the mass function for. For a continuous random variable,
we instead define the probability density function (pdf) fX(x) as the
derivative of the cdf. Through the fundamental theorem of calculus
we have:

P[a ≤ X ≤ b] =
∫ b

a
fX(x)dx.

Usually, we define random variables by providing their pmf or pdf.2 2 A table of common families of dis-
tributions is linked to at the top of the
course website. Typically, we denote
the pdf/cdf of a random variable by
indicating which family and with which
parameters a random variable comes
from. For example, X ∼ N(0, 1) would

indicate that fX(x) = 1√
2π

e−
1
2 x2

.

The expected value E[X] of a discrete random variable X is defined
by the pmf as:

E[X] = ∑
x

x · pX(x) = ∑
x

x · P[x = X],

For a continuous random variable, we define the expected value as:

EX =
∫ ∞

−∞
x · fX(x) dx.

The variance Var[X] of a random variable X is given by the expected
squared distance away from the expected value: E[(X − EX)2].

For any random variable X and constants a and b, we have that:

E[aX + b] = a · E[X] + b, Var[aX + b] = a2 · Var[X].

For two random variables X and Y, we also have that E[X + Y] =

E[X] + E[Y]. The variance of the sum is equal to the sum of the vari-
ances if the random variables are independent, a concept defined in
the following section.

JOINT DISTRIBUTIONS
Let X1, . . . , Xn be a sequence of n random variables defined over the
same sample space S. We can define the joint probability density
function as a function f such that:

P[(a1 ≤ X1 ≤ b1) ∩ · · · ∩ (an ≤ Xn ≤ bn)] =
∫ b1

a1

· · ·
∫ bn

an
f (x1, . . . , xn) dx1 · · · dxn.

We say that the sequence of random variables is independent if we
have the following factorization for all values of xi:

f (x1, . . . , xn) = fX1(x1) · · · fXn(xn).

Similarly, we have the following definition of a conditional probability
density function for two random variables X and Y:

fX|Y(x, y) =
f (x, y)
fY(y)

While we will work with sets of independent random variables starting
in the first week of the class, we will not make deep use of these joint
distributions until the second unit.


