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Handout 09: Maximum Likelihood Estimation
(MLE)

Consider once again a random sample of size from n from some dis-

tribution parameterized by some unknown θ, X1, . . . , Xn
iid∼ Gθ , where

the distribution has a pdf or pmf equal to f (θ; x).1 The likelihood 1 Throughout this handout, any many
others to come, I will use the conven-
tion of using a semicolon to seperate
the inputs of functions that have both
random and non-random inputs. Often,
we will drop the random inputs (here,
x) when it is clear from the context.

(function) L is the joint probability of observing any particular set of
data x1, . . . , xn as a function of θ. Basically, how likely it is to observe
this specific configuration of the data. We can write the likelihood as:

L(θ; x1, . . . , xn) =
n

∏
i=1

f (θ; xi).

This form comes the fact that the data are assumed to be sampled i.i.d.
from the distribution Gθ .2 Frequently, it is useful to work with the 2 Please review the Joint Distributions

section of the probability review hand-
out for you want more details.

log-likelihood function l, which has the following form:3

3 Like many statistical texts, I use the
convention that log() is the natural
logarithm. We never need anything
other than the natural log.

l(θ; x1, . . . , xn) =
n

∑
i=1

log [ f (θ; xi)]

Now, consider wanting to find a point estimator θ given a sample of
data. One very common technique is to take the maximum likeli-
hood estimator (MLE), which finds the value of θ which maximizes
the chance of observering our data. Mathematically, we have:

θ̂MLE = arg max
θ∈Θ

[L(θ; x1, . . . , xn)] ,

Where Θ are the set of allowed values that θ can take on. Maximizing
the likelihood is the same as maximizing the log-likelihood; this is
often the form that is easier to compute.

The MLE has a number of important properties:

• asymptotically unbiased: while the MLE is often biased, in the
limit of large n, the bias will limit to zero.

• consistent: the MLE is consistent under very weak regularity con-
ditions.

• invariant: the MLE for estimating a transformation of θ will be
equal to the transformation of the MLE of θ. For example, the MLE
for the standard deviation will always be the square root of the MLE
for the variance.

• efficent: this is a stronger form of consistency. In short, the rate of
convergence to θ has n grows is optimal.

Due to these properties, the fact that the MLE is a very intuitive type
of estimator, and (as we will soon seen), we can compute approximate
hypothesis tests using them, the MLE is a very popular technique for
generating a point estimator in any case where it can be computed.
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Example (Poisson rate) Let’s see an example of how we compute the
MLE estimator for the estimation of the parameter λ > 0 from a sam-
ple of data that follows the Poisson distribution. To start, we write
down the log-likelihood:

l(λ; x1, . . . , xn) =
n

∑
i=1

log [ f (λ; xi)]

=
n

∑
i=1

log
[

λxi e−λ

xi!

]
=

n

∑
i=1

[xi · log(λ)− λ − log(xi!)]

We want to find the maximum, so let’s take the derivative with respect
to λ (note that the pesky xi! term disappears):

∂

∂λ
l(λ; x1, . . . , xn) =

n

∑
i=1

[ xi
λ
− 1

]
Now, we want to find the maximum of this function. So, let’s set the
derivative equal to zero. This is usually the step where we replace the
generic parameter (λ) with the hat version (λ̂):

0 =
n

∑
i=1

[
xi

λ̂
− 1

]
0 =

n

∑
i=1

[
xi

λ̂

]
− n

n =
n

∑
i=1

[
xi

λ̂

]
λ̂ =

1
n
·

n

∑
i=1

xi = x̄.

So, the MLE for λ is just the sample mean. The average of a Poisson
distribution is λ, so this should seem very reasonable, if not particu-
larly exciting.

When working with the MLE for a family of distributions with mul-
tiple parameters, we repeat this process by taking the derivative with
respect to each parameter and setting them all equal to zero and solv-
ing the system of equations.


