Handout 12: Contingency Tables

While there are many uses of the G-test, the most common application is in the study of contingency tables. Consider, for example, a multinomial with k = 4, just as before. However, this time we are going to arrange the data into a two-by-two table, using a slightly different notation for the counts to make it clear that each is associated with a specific row and column. This yields the following, where we have added row sums r_j and column sums c_j , since we will need them in a moment:

<i>x</i> _{1,1}	<i>x</i> _{1,2}	r_1
<i>x</i> _{2,1}	<i>x</i> _{2,2}	r_2
<i>c</i> ₁	<i>c</i> ₂	п

We can re-define the multinomial probabilities similarly, where $p_{i,j}$ is the probability of landing in row *i* and column *j*. A very common type of hypothesis test is to consider the set Θ_0 of all tables in which event of being in row *i* is independent of the event of being in column *j*, for all combinations of *i* and *j*.

The maximum likelihood estimator is unchanged in this case; it is still the raw counts divided by the sample size. The numerator of the *G* test, however, is different. In order to be in Θ_0 , we need to have that $p_{i,j}$ is equal to the probability of being in row *i* times the probability of being in column *j*. It should not be surprising to know then that in order to maximize the log-likelihood under H_0 , we use the following probabilities and implied expected counts:

$$\tilde{p}_{i,j} = \left(\frac{r_i}{n}\right) \times \left(\frac{c_j}{n}\right) \quad \Rightarrow \quad e_{i,j} = \left(\frac{r_i \times c_j}{n}\right).$$

In other words, the proportion of data that were in row i times the proportion of data that were in column j. From here, we use the same formula as we have on the other page by replacing the sum of j with a double sum over both i and j.

We can extend this same approach to the case where we have *R* rows and *C* columns. What, in general, will be the degrees of freedom for *G*? We have CR - 1 dimensions in Θ (any set of probabilities, with the one restriction that the sum to 1) and (C - 1) + (R - 1) in Θ_0 (any set of valid column probabilities and row probabilities, each having to sum to 1). This difference factors as:

$$(CR-1) - (C-1) - (R-1) = (C-1) \cdot (R-1).$$

So, in the common two-by-two table case, we have only a single degree of freedom. This will grow larger for tables with more rows and/or columns.