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Handout 13: Chi-Squared Test

There is a popular alternative to the log-likelihood G-scores that we
have been using for testing the goodness-of-fit of discrete data and
checking the independence of columns and rows in a contingency ta-
ble called the chi-squared test. You might be thinking one (or both)
of the following: (1) haven’t we already learned the chi-squared test
when testing the variance of one sample? or (2) does the G-score have a
chi-squared distribution? You would be correct in both of these points
and in being somewhat confused. Some of the original hypothesis tests
generated in the history of statistics unfortunately became known by
the name of the null-distribution, which is very confusing because it
later turned out that those distributions had many other applications.
At any rate, the test that most people would mean when the call some-
thing the chi-squared test, is the one I will show you today.

The chi-squared test starts with the same setup as the log-likelihood
test with G-scores, namely, we compute the expected counts ei or ei,j

for each cell in the table. The form of the test statistic is different, but
should look somewhat similar (I will write it for the multinomial case,
but it should be clear that it is the same idea with the contingency
table):

C = ∑
i

(xi − ei)
2

ei
∼ χ2.

The degrees of freedom of the chi-squared test will be exactly the same
as with the G-scores: the number of cells minus one, minus the number
of free parameters in the null-hypothesis.

These two tests are actually related to one another. Let ∆i = xi − ei.
Then, starting with the G-score we have:

G = −2 ∑
i

xi log
(

ei
xi

)
= 2 ∑

i
xi log

(
xi
ei

)
= 2 ∑

i
(ei + ∆i) log

(
ei + ∆i

ei

)
= 2 ∑

i
(ei + ∆i) log

(
1 +

∆i
ei

)
Now, we can use the Taylor series of log(y + 1) around 1, which gives
(for small y): y − 0.5y2 + O(y3).1 Then: 1 The notation O(y3) means a polyno-

mial of y that has no constant, linear, or
quadratic terms. When y is small, those
other terms will dominate the higher
order ones, so we do not worry about
keeping track of them.
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G = 2 ∑
i
(ei + ∆i)

(
∆i
ei

−
∆2

i
2e2

i
+ O(∆3

i )

)

= 2 ∑
i

[
∆i −

∆2
i

2ei
+

∆2
i

ei
−

∆3
i

2e2
i
+ O(∆3

i )

]

= 2 ∑
i

[
∆i +

∆2
i

2ei
+ O(∆3

i )

]

We know that ∑i ∆i = 0, because the expected counts and actual
counts both sum to 1. So, after removing the higher-order terms:

G ≈ ∑
i

∆2
i

ei
= ∑

i

(xi − ei)
2

ei
= C.

So, under the null hypothesis in which we do not expect the differences
between the observed and expected counts to differ too much, the two
tests can be seen as approximations of one another.

The chi-squared test, as implied by being named by the correspond-
ing distribution, is very old and has been ingrained as the go-to test for
contingency tables in some domains. I would say that most statisti-
cians would now recommend the G-test as the best alternative, but you
will see the chi-squared test in many sources and should understand
it and know how to use it and how it compares to the likelihood-ratio
test.

What’s better about the G-test in most situations? Both tests are
asymptotically valid under the null hypothesis, though the G-test is
more robust to small sample sizes. More importantly, the chi-squared
test can only be motived under the null hypothesis. It’s hard to say
what is measures, if anything, under an alternative hypothesis. That’s
not true of likelihood-ratio tests: the value of Λ (which we call G in
this specific sub-case) is a reasonable measurement of how much the
MLE-based model of the data differs from the null hypothesis. So, for
the kinds of analysis we were doing last class, the G-scores tend to be
much better for finding those relationships which differ the most.


