Handout 15: Linear Regression

Setup Today we want to expand the regression set-up that we saw last time. Specifically, for some fixed positive integer p, consider a set of fixed real numbers $x_{i, j}$ for $i \in\{1, \ldots, n\}$ and $j \in\{1, \ldots, p\}$. Then, consider observing a independent random sample of size n denoted by Y_{1}, \ldots, Y_{n} where

$$
Y_{i} \sim N\left(\sum_{j} x_{i, j} \cdot b_{j}, \sigma^{2}\right)
$$

For some unknown constants b_{1}, \ldots, b_{p}, and σ^{2}. We can write the expected values of all of the observations as a single equation as follows:

$$
\mathbb{E}\left(\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{n}
\end{array}\right)=\left(\begin{array}{cccc}
x_{1,1} & x_{1,2} & \cdots & x_{1, p} \\
x_{2,1} & \ddots & & x_{2, p} \\
\vdots & & \ddots & \vdots \\
x_{n, 1} & x_{n, 2} & \cdots & x_{n, p}
\end{array}\right)\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{p}
\end{array}\right)
$$

Or, significantly more compactly, in a matrix format:

$$
\mathbb{E} Y=X b
$$

Here, we now have a random vector Y on the left and a matrix multiplied by a vector of unknown parameters on the right.

Interpretation The parameter b_{j} can be interpreted as the average change in Y expected in a unit change of x_{j} where all other variables are held fixed. ${ }^{1}$ These can be thought of as analogous to partial derivatives. Note that we do not have an explicit intercept term in the model because we could integrate one by setting $x_{i, 1}$ to 1 for all i.

MLE Just as we saw last time, the MLE estimators for the b_{j} parameters of linear regression come from minimizing the sum of squared differences between the Y_{i} 's and their expected means. In matrix form, this means minimizing $\|Y-X b\|_{2}^{2} .^{2}$ To do this, we take the gradient with respect to b, which can be done as follows:

$$
\begin{aligned}
\nabla_{b}\left[\|Y-X b\|_{2}^{2}\right] & =\nabla_{b}\left[Y^{t} Y+b^{t} X^{t} X b-2 Y^{t} X b\right] \\
& =2 X^{t} X b-2 X^{t} Y
\end{aligned}
$$

Then, setting it to zero, we get:

$$
\widehat{b}_{M L E}=\left(X^{t} X\right)^{-1} X^{t} Y
$$

This result is call the normal equation (or normal equations). Similarly, the estimator of the variance is given by:

$$
\widehat{\sigma^{2}}=\frac{1}{n-p}\|Y-X b\|_{2}^{2}
$$

[^0] associated with each observation.
${ }^{2}$ Neither multivarate calculus nor linear algebra are prerequisites for this class, so it's okay if some of the details are hazy here. I won't ask any of this on an exam and am actually moving quicker than usual.

Inference Looking at the normal equation, you can see that the MLE estimator of each b_{j} is a linear combination of the values of Y_{i}. Therefore, each will be normally distributed. Specifically, we have:

$$
\widehat{b}_{j} \sim N\left(b_{j}, \sigma^{2} \cdot\left(X^{t} X\right)_{j, j}^{-1}\right)
$$

From here, using the same methods we used the first several weeks of the course, we can show that for any $j \in\{1, \ldots, p\}$, the following is a pivot statistic with a T-distribution having $n-p$ degrees of freedom:

$$
T=\frac{\widehat{b}_{j}-b_{j}}{\sqrt{\widehat{\sigma}^{2} \cdot\left(X^{t} X\right)_{j, j}^{-1}}}
$$

We can use this to compute confidence intervals and hypothesis tests for individual parameters b_{j}.

Extensions This has been a very quick introduction to linear regression, a topic best covered through a semester-long course following this one (we hope to offer such a course at some point, but likely not until most of you have graduated). I hope that several of you will be showing some common extensions to the core model for your final project.

[^0]: ${ }^{1}$ We use x_{j} to indicate the feature underlying the individual values $x_{i, j}$

