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Handout 15: Linear Regression

Setup Today we want to expand the regression set-up that we saw last
time. Specifically, for some fixed positive integer p, consider a set of
fixed real numbers xi,j for i ∈ {1, . . . , n} and j ∈ {1, . . . , p}. Then,
consider observing a independent random sample of size n denoted
by Y1, . . . , Yn where

Yi ∼ N(∑
j

xi,j · bj, σ2)

For some unknown constants b1, . . . , bp, and σ2. We can write the ex-
pected values of all of the observations as a single equation as follows:
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Or, significantly more compactly, in a matrix format:

EY = Xb

Here, we now have a random vector Y on the left and a matrix multi-
plied by a vector of unknown parameters on the right.

Interpretation The parameter bj can be interpreted as the average change
in Y expected in a unit change of xj where all other variables are held
fixed.1 These can be thought of as analogous to partial derivatives. 1 We use xj to indicate the feature

underlying the individual values xi,j
associated with each observation.

Note that we do not have an explicit intercept term in the model be-
cause we could integrate one by setting xi,1 to 1 for all i.

MLE Just as we saw last time, the MLE estimators for the bj param-
eters of linear regression come from minimizing the sum of squared
differences between the Yi’s and their expected means. In matrix form,
this means minimizing ||Y − Xb||22.2 To do this, we take the gradient 2 Neither multivarate calculus nor linear

algebra are prerequisites for this class,
so it’s okay if some of the details are
hazy here. I won’t ask any of this on an
exam and am actually moving quicker
than usual.

with respect to b, which can be done as follows:

∇b

[
||Y − Xb||22

]
= ∇b

[
YtY + btXtXb − 2YtXb

]
= 2XtXb − 2XtY.

Then, setting it to zero, we get:

b̂MLE = (XtX)−1XtY.

This result is call the normal equation (or normal equations). Similarly,
the estimator of the variance is given by:

σ̂2 =
1

n − p
||Y − Xb||22.
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Inference Looking at the normal equation, you can see that the MLE
estimator of each bj is a linear combination of the values of Yi. There-
fore, each will be normally distributed. Specifically, we have:

b̂j ∼ N(bj, σ2 · (XtX)−1
j,j ).

From here, using the same methods we used the first several weeks of
the course, we can show that for any j ∈ {1, . . . , p}, the following is a
pivot statistic with a T-distribution having n − p degrees of freedom:

T =
b̂j − bj√

σ̂2 · (XtX)−1
j,j

We can use this to compute confidence intervals and hypothesis tests
for individual parameters bj.

Extensions This has been a very quick introduction to linear regression,
a topic best covered through a semester-long course following this one
(we hope to offer such a course at some point, but likely not until most
of you have graduated). I hope that several of you will be showing
some common extensions to the core model for your final project.


