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Handout 17: Bayesian Statistics I

Interpretation of Probability Both the mathematical framework for
probability that you learned in 329 as well as most of the theoretical
results in 330 are founded on a framework developed in a series of
works by Andrey Kolmogorov (1925; 1931; 1933). While the math-
ematical framework is almost universally accepted, there are several
different interpretations of how the probability of an event should be
understood as a model or reality. Many sources suggest that there are
roughly four different families of interpretation:1 1 The philosophy of probability is a

huge field. If you are interested in
learning more, I suggest starting with
the excellent article on the subject
published by the Stanford Encyclopedia of
Philosophy. I have included a few names
and dates to help give some context,
though note that these are just a few
key works that fit into longer histories
and conversations that continue into the
present day.

• naïve: also known as the classical interpretation; the probability of
an event as the proportion of total outcomes in which this event
occurs (Laplace 1799)

• frequentist: the probability of an event is the proportion of times
it will occur in an infinite number of independent repetitions of an
experiment (Poisson 1837; Bernoulli, 1713)

• subjective: the probability is a measurment of certainty; an exten-
tion of Boolean (true/false) logic (Bayes 1763; Laplace 1812)

• propensity: a physical definition based on causes (Pierce 1878; Pop-
per 1954)

We started with the naïve interpretation in 329, before largely using the
frequentist interpretation throughout the remainder of the semester
and up until now in 330. As I tried to explain in class last week, how-
ever, there are some challenges with the frequentist interpretation. To-
day, we will see how the subjective interpretation of probability leads
to some novel approaches to statistical inference.

Bayesian Estimation for Binomial Using the frequentist interpreta-
tion of probability, we have treated our data (X) as a random variable
defined by a distribution that has one or more fixed but unknown pa-
rameters. Our goal is to estimate features of the parameters through
point estimators, confidence intervals, and/or hypothesis tests. The
probabilistic properties of these tasks (for example, the bias of a point
estimator or confidence level of a hypothesis test) are in terms of re-
peating an experiment many times; they do not say anything concrete
about a particular run of an experiment.

Subjective probabilities open the door to a very different approach:
we can treat the unknown parameters as random variables as well,
where probabilities indicate uncertainty rather than long-term frequen-
cies. Today, we will see how this works with a specific case, before
moving to a more general framework next time.

Consider the task of estimating the parameter p from a random
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variable X taken from a Bin(n, p) distribution with a known value of
n. Let’s assume that before observing any data, we think that any value
of p is equally likely. We could write this by defining our unknown
parameter p to be a random variable with a uniform distribution:

p ∼ Uni f (0, 1).

This is called the prior distribution, because it reflects our knowledge
of p prior to observing any data. Now, when describing the random
variable X, we have to give its distribution conditioned on a specific
value of the random variable p. That is, we need to write this:2 2 The distribution of X|p is called the

likelihood following the notation from
the MLE.X|p ∼ Bin(n, p).

Now, the important thing is describing our knowledge about p after
observing the data. That is, we want to know the distribution of p|X.
Bayes rule tells us that we can calculate this as:

fp|X(p|x) =
fX|p(x|p)× fp(p)

fX(x)
.

This quantity is called the posterior distribution. Determining the
form of the posterior distribution is the key task in generating Bayesian
estimators. One simplifying step is to notice that the denominator
does not depend on p, so we can replace it with a constant, adding
it back later (if needed) by whatever number makes the posterior a
proper distribution (in other words, it integrates to 1). This gives the
following standard form:3 3 I will try to keep the subscripts on

the density functions f for clarity in
the notes. However, on the board I will
almost always drop them. Feel free to
do the same in your work.

fp|X(p|x) ∝ fX|p(x|p)× fp(p).

When doing computations, you can always drop any additive or mul-
tiplicative factor that depends only on X and not p.

Now let’s actually find the posterior distribution for this specific
example. We have the following form of the density function (keep
in mind that this is a function of p; we can remove any constants that
depend only on x and n):

fp|X(p|X) ∝
(

n
x

)
· px · (1 − p)n−x · (1)

∝ px · (1 − p)1−x = p(x+1)−1 · (1 − p)(n−x+1)−1.

The last step may seem unusual, but if you look at the distribution
table it becomes more clear. This is a Beta distribution, with α =

(x + 1) and β = (n − x + 1). So, the posterior is given by:

p|X ∼ Beta(x + 1, n − x + 1).

This new distribution represents our knowledge and uncertainty about
the parameter P. We will talk more next time about how we can use the
posterior distribution to generate Bayesian point estimates and confi-
dence intervals.


