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Handout 18: Bayesian Statistics II

Bayesian Statistics Let’s start by defining the setup from last in a for-
mal, generic way. Bayesian statistics first considers a random variable
θ⃗, called the prior, with a pdf/pmf equal to f

θ⃗
. Then, we have a se-

quence X1, . . . , Xn of i.i.d. random variables, each of which is defined
through the conditional pdf/pmf fxj |⃗θ

(xj |⃗θ). Finally, we can compute

the posterior distribution of θ⃗ |⃗x by using a form of Bayes rule:1 1 I am using the notation that X⃗ =
(X1, . . . , Xn), and likewise for x⃗.

f
θ⃗ |⃗x (⃗θ |⃗x) ∝

[
∏

j
fxj |⃗θ

(xj)

]
× f

θ⃗
.

Generally, the main task in Bayesian statistics is to determine the shape
of the posterior when given a prior and likelihood.

Point Estimation While the entire posterior distribution is the clearest
picture of our knowledge of the parameter θ⃗, sometimes we need to
convert our knowledge into a single best guess point estimator. The
Bayesian point estimator is the expected value of the posterior distri-
bution. In general, this will be somewhere between the expected value
of the prior distribution and the mean of the data X̄.

Credible Intervals We can represent a version of a confidence interval
for Bayesian statistics. For a univariate θ, a credible interval with
credibility 1 − α is simply a set of bounds l and u such that:

P[l ≤ θ ≤ u|X⃗] ≥ 1 − α.

A similar interval can also be constructed for any component of a mul-
tivariate parameter θ⃗. We can compute these values using R. A key
difference from the frequentist confidence intervals is that the prob-
abilistic interpretation of the interval is not lost even after we collect
data.

Conjugate Priors In many cases, as we will see on today’s worksheet,
we can choose a prior distribution that aligns with the likelihood func-
tion such that the prior and the posterior come from the same family.
For example, the Beta and the Binomial, as we saw on the last work-
sheet. The prior for a likelihood is called the conjugate prior.


