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Handout 19: Cramér-Rao Lower Bound

Consider a random variable X with a probability density function
f (θ; x) with one univariate parameter θ. We can define a random
variable V, called the score, as the derivative of the logarithm of the
density of X.1 We see that this has a nice form by applying the chain 1 The important point is that the

score tells us how much the density
f changes at a point x with respect to
θ. The logarithm is there to make the
score measure the relative change rather
than the absolute change, which can
also be seen through the the application
of the chain-rule.

rule:

V =
∂

∂θ
[log( f (θ; X))]

=
1

f (θ; X)
· ∂

∂θ
[ f (θ; X)] .

The score measures the sensitivity of the data to the parameter θ. How-
ever, because it can be positive or negative, on average it turns out that
the score will have an expected value of zero:

EV =
∫

f (θ; x) · 1
f (θ; x)

· ∂

∂θ
[ f (θ; x)] dx

=
∫

∂

∂θ
f (θ; x)dx =

∂

∂θ

∫
f (θ; x)dx =

∂

∂θ
[1] = 0.

This holds for any value of θ.
Because the positive and negative scores cancel each other out, in

order to use the score as a measurement of the relationship between
the paramter θ and a value of the data X, we need to look at the
square of the score. The expected value of this is called the Fisher
information, commonly denoted by I(θ):

I(θ) = E[V2|θ] = Var(V|θ).

The Fisher information serves as a measurment of how much infor-
mation about θ is provided by the data X. The Fisher information can
change for different values of θ, but does not depend on the data X,
which has been integrated out.

Now, let T = t(X) be an unbiased point estimator for the parameter
θ. The risk of an estimator of θ is defined as:

R(θ̂; θ) = E
[
(θ̂ − θ)2

]
.

Let’s see if we can offer a bound on the best possible risk of any un-
biased estimator. First, take the covariance of T and V.2 This has, by 2 Recall that the covariance in general

would be E[(V − EV)(T − ET)], but is
ETV because V has an expected value
of 0.

construction, a nice form:

Cov(V, T) =
∫ [

f (θ; x)× t(x)× 1
f (θ; x)

× ∂

∂θ
[ f (θ; x)]

]
dx

=
∂

∂θ

[∫
t(x) f (θ, x)dx

]
=

∂

∂θ
ET = 1.
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Where the last step comes from the fact that T is unbiased. Next, we
need to use the Cauchy-Schwartz Inequality, which for probability
spaces says that covariance of two random variables is always less in
absolute value than the square-root of the product of their variances.3 3 The more general form says that the

squared inner product |⟨u, v⟩|2. is less
than ⟨u, u⟩ · ⟨v, v⟩. Applying this to the
integration with density f yields the
probabilistic version.

Applying this to T and V shows that:

Var(T) · Var(V) ≥ |Cov(V, T)|2

Var(T) · I(θ) ≥ |1|2

Var(T) ≥ 1
I(θ) .

So, the variance of T can never be less than the inverse of the Fisher
information. This provides a bound on the best that we can hope to
do in terms of estimating the parameter θ from the data X. This result
is called the Cramér-Rao lower bound.

The efficency of an unbiased estimator, written e(θ̂), provides a
measurement of how far away the variance of the estimator is away
from the Cramèr-Rao bound. Namely, we have:

e(θ̂) =
I(θ)−1

Var(θ̂)
.

We say that an estimator is efficent if it has an effiency of 1. Another
way to state the Cramér-Rao bound is to simply say that the efficency
is never greater than 1.

Under some regularity conditions—in particular, that the logarithm
of the density function f is twice-differentiable—the Fisher informa-
tion can be written in a somewhat simplified form:

I(θ) = −E

[
∂2

∂θ2 log f (θ; x)
]

.

Typically, squaring the log density requires having a number of cross
terms, whereas the second derivative removes a number of terms, sim-
plifying the calculation. This is the version that we will use on the
worksheet.

It is possible to extend the result above to the case where X and θ are
vectors. The extension for a vector X, which includes the important
case of a random sample of size n, is fairly trivial. We just replace
all of the single integrals above with n-dimensional integrals over Rn.
Generalizing to a vector value for θ is a bit more work, requiring some
vector calculus that goes beyond the prerequisites for this course. The
general idea, however, is very similar.


