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Handout 20: Jeffreys Prior and Empirical Priors

Perhaps the biggest challenge when working with Bayesian statistics is
selecting an approprirate prior distribution. We have seen that in sim-
ple cases, the use of conjugate priors allows us to compute Bayesian
estimators analytically. But, the question of selecting the hyperparam-
eters remains. Also, in many cases, we need to work with more com-
plex models that do not have conjugate priors. How to select the prior
in those cases? There is no single solution, but let’s see two common
approaches.

Empirical Priors In many cases, we can use a larger dataset to esti-
mate the prior distribution before looking at our specific example. For
example, if we used a Bayesian estimator to predict whether a startup
will be successful, we could use previous data about all startups in the
previous 10 years to generate a prior distribution. Similarly, we could
do this to predict the success of a new drug or the sale price of a home.
While only possible in certain cases, when feasible, it offers an easily
implemented and defensible approach to constructing a prior.1 1 There is also a technique called Em-

pirical Bayes, which is much more
complex. It was once very popular, but
has been replaced by other techniques
in recent years. Empirical priors, on the
other hand, are commonly used and
very useful.

Jeffreys Prior Another approach is to try to select a neutral (non-
informative) prior that indicates that we do not know anything spe-
cific regarding our initial knowledge about the parameters of interest.
One way to do this is to put equal weight (in other words, a uniform
distribution) on all the values. This often works relatively well, but in
some cases we can improve this approach.

A minor problem with uniform priors is that they depend on the
parameterization choosen for the probability distribution. For exam-
ple, we usually define the normal distribution through the variance
σ2. However, we could also do this by defining the standard deviation
σ or the precision σ−1. Putting an equal weight on all values of the
parameter means something different in each of these cases. A (per-
haps surprising) solution is to set the prior proportional to the Fisher
information:

p(θ) ∝
√
I(θ).

This is called the Jeffreys Prior. What does this offer us? Well, it
turns out that this prior will result in the same results regardless of
the parameterization choosen. In other words, if we have a different
parameterization in terms of ϕ = g(θ), then the transformation of the
prior p(θ) will be the same as the prior on ϕ based on I(ϕ).

In some cases, the Jeffreys Prior is an improper prior.2 In other 2 Some sources warn against improper
priors based on certain edge-cases,
but I personally think they are okay
when motivated by the non-informative
properties of the Jeffreys Prior.

words, it is not something that can be normalized to be a proper prob-
ability. This is generally okay, though, and we can compute the poste-
rior in the normal way.
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Proof of Invariance To see why the Jeffreys Prior relates the Fisher
information, consider a re-parameterization φ = g(θ). If we have a
prior pθ(θ), an equivalent prior in terms of φ is given by the normal
change of variables formula:

pφ(φ) = pθ(θ) ·
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Now, look at how the value of I(φ) related to I(θ):
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Taking the square-root of both sides yields:√
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And we see that making the prior proportional to the square-root of
the Fisher information produces an equivalent prior regardless of the
parameterization.


