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Worksheet 09 (Solutions)

1. Find the MLE estimator for the estimation of the parameter λ

from i.i.d. observations of an exponentialy distributed random vari-
able.

Solution: We have the following log-likelihood:

l(λ; x1, . . . , xn) =
n

∑
i=1

log
[
λ · e−λxi

]
=

n

∑
i=1

[log(λ)− λxi]

The derivative with respect to λ is:

∂

∂λ
l(λ; x1, . . . , xn) =

n

∑
i=1

[
1
λ
− xi

]
Setting this equal to zero (and putting a hat on the parameter), gives:

n

∑
i=1

1
λ̂
=

n

∑
i=1

xi

n
λ̂
=

n

∑
i=1

xi

n
∑n

i=1 xi
= λ̂

1
1
n · ∑n

i=1 xi
= λ̂

In other words, the MLE is just one divided by the sample mean. That
makes a lot of sense (but, again, not maybe very interesting) given that
λ is the inverse of the mean for the exponential distribution.

2. Find the MLE estimator for the estimation of the variance from
i.i.d. observations of an exponentialy distributed random variable.
Hint: This is easily derived from the previous result. Should not re-
quire any new derivatives.

Solution: We know that the variance of an exponentially distributed
random variable is λ−2. We already have the MLE for λ, so the MLE
of the variance is just this value to the −2 power:

MLE =

[
1

1
n · ∑n

i=1 xi

]−2

= X̄2.
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Notice that this is quite different than the typical estimator that we use
for estimating the variance of a sample (S2

X), taking into account the
special structure of the exponential distribution.

3. Find the MLE estimator for the estimation of the parameter p
from i.i.d. observations of a Bernoulli distributed random variable.
Hint: When you set the derivative equal to zero, multiple by 1

n to
write the equation in terms of just X̄ and p̂.

Solution: We have the following log-likelihood:

l(p; x1, . . . , xn) =
n

∑
i=1

log
[

pxi · (1 − p)1−xi
]

=
n

∑
i=1

[xi · log(p) + (1 − xi) · log(1 − p)]

The derivative with respect to p is:

∂

∂p
l(p; x1, . . . , xn) =

n

∑
i=1

[
xi
p
+

(−1) · (1 − xi)

1 − p

]
Setting this equal to zero (and putting a hat on the parameter), gives
the following

1
p̂
·

n

∑
i=1

xi =
1

1 − p̂
· ∑

i
(1 − xi)

Dividing both side by n as in the hint gives:

1
p̂
· x̄ =

1
1 − p̂

· (1 − x̄)

And then, solving gives:

x̄(1 − p̂) = p̂(1 − x̄)

x̄ − x̄ · p̂ = p̂ − x̄ · p̂

x̄ = p̂

And again, we see that the MLE is just the sample mean.

4. Find the MLE estimator for the estimation of the parameters
µ and σ2 from i.i.d. observations of a normally distributed random
variable. Hint: We want to think of σ2 as a single parameter (not the
square of a parameter). I recommend using v = σ2 to keep this clear.
Also, find µ̂ first. You can find the MLE for the mean without knowing
the MLE of the variance.
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Solution: This is where things get a bit more interesting. We have
the following log-likelihood:

l(µ, v; x1, . . . , xn) =
n

∑
i=1

log
[

1√
2πv

· e−
1

2v [xi−µ]2
]

=
n

∑
i=1

(−1/2) · log(2πv)− 1
2v

[xi − µ]2

The derivative with respect to µ is:

∂

∂µ
l(µ, v; x1, . . . , xn) =

n

∑
i=1

1
v
[xi − µ]

Setting this equal to zero gives:

0 =
n

∑
i=1

[xi − µ̂]

µ̂ = x̄.

Which is similar to the other results. The more interesting one is the
variance. We see that the derivative is:

∂

∂v
l(µ, v; x1, . . . , xn) =

n

∑
i=1

−1/2
2πv

· (2π) +
1

2v2 [xi − µ]2

=
n

∑
i=1

−1
2v

+
1

2v2 [xi − µ]2

Setting this equal to zero and plugging in the value that we know for
µ̂, we get:

n

∑
i=1

1
2v̂

=
1

2v̂2

n

∑
i=1

[xi − µ̂]2

2nv̂2

2v̂
=

n

∑
i=1

[xi − µ̂]2

v̂ =
1
n

n

∑
i=1

[xi − µ̂]2

=
1
n

n

∑
i=1

[xi − x̄]2

So, this is very similar, but not quite the same, as the estimator S2
X that

we have been using so far.

5. What is the bias of the MLE estimator for the variance from a
normal distribution with unknown mean and variance? Hint: Use
what we know about S2

X to make this relatively easy.
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Solution: We know that the v̂ can be written in terms of S2
X as fol-

lows:

v̂MLE =
n − 1

n
· S2

X

So, the expected value is:

Ev̂MLE =
n − 1

n
· ES2

X

=
n − 1

n
· v

And the bias is:

Ev̂MLE − v =
n − 1

n
· v − v

= v ·
[

n − 1
n

− 1
]

= v ·
[

n − 1
n

− n
n

]
= v ·

[
−1
n

]
=

−v
n

So, the bias is not zero, but (as we know will be true of all MLE esti-
mators) will limit to zero in the limit of n → ∞.


