Worksheet 09 (Solutions)

1. Find the MLE estimator for the estimation of the parameter λ from i.i.d. observations of an exponentialy distributed random variable.

Solution: We have the following log-likelihood:

$$
\begin{aligned}
l\left(\lambda ; x_{1}, \ldots, x_{n}\right) & =\sum_{i=1}^{n} \log \left[\lambda \cdot e^{-\lambda x_{i}}\right] \\
& =\sum_{i=1}^{n}\left[\log (\lambda)-\lambda x_{i}\right]
\end{aligned}
$$

The derivative with respect to λ is:

$$
\frac{\partial}{\partial \lambda} l\left(\lambda ; x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n}\left[\frac{1}{\lambda}-x_{i}\right]
$$

Setting this equal to zero (and putting a hat on the parameter), gives:

$$
\begin{aligned}
\sum_{i=1}^{n} \frac{1}{\hat{\lambda}} & =\sum_{i=1}^{n} x_{i} \\
\frac{n}{\hat{\lambda}} & =\sum_{i=1}^{n} x_{i} \\
\frac{n}{\sum_{i=1}^{n} x_{i}} & =\hat{\lambda} \\
\frac{1}{\frac{1}{n} \cdot \sum_{i=1}^{n} x_{i}} & =\hat{\lambda}
\end{aligned}
$$

In other words, the MLE is just one divided by the sample mean. That makes a lot of sense (but, again, not maybe very interesting) given that λ is the inverse of the mean for the exponential distribution.
2. Find the MLE estimator for the estimation of the variance from i.i.d. observations of an exponentialy distributed random variable. Hint: This is easily derived from the previous result. Should not require any new derivatives.

Solution: We know that the variance of an exponentially distributed random variable is λ^{-2}. We already have the MLE for λ, so the MLE of the variance is just this value to the -2 power:

$$
\begin{aligned}
\mathrm{MLE} & =\left[\frac{1}{\frac{1}{n} \cdot \sum_{i=1}^{n} x_{i}}\right]^{-2} \\
& =\bar{X}^{2}
\end{aligned}
$$

Notice that this is quite different than the typical estimator that we use for estimating the variance of a sample $\left(S_{X}^{2}\right)$, taking into account the special structure of the exponential distribution.
3. Find the MLE estimator for the estimation of the parameter p from i.i.d. observations of a Bernoulli distributed random variable. Hint: When you set the derivative equal to zero, multiple by $\frac{1}{n}$ to write the equation in terms of just \bar{X} and \hat{p}.

Solution: We have the following log-likelihood:

$$
\begin{aligned}
l\left(p ; x_{1}, \ldots, x_{n}\right) & =\sum_{i=1}^{n} \log \left[p^{x_{i}} \cdot(1-p)^{1-x_{i}}\right] \\
& =\sum_{i=1}^{n}\left[x_{i} \cdot \log (p)+\left(1-x_{i}\right) \cdot \log (1-p)\right]
\end{aligned}
$$

The derivative with respect to p is:

$$
\frac{\partial}{\partial p} l\left(p ; x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n}\left[\frac{x_{i}}{p}+\frac{(-1) \cdot\left(1-x_{i}\right)}{1-p}\right]
$$

Setting this equal to zero (and putting a hat on the parameter), gives the following

$$
\frac{1}{\hat{p}} \cdot \sum_{i=1}^{n} x_{i}=\frac{1}{1-\hat{p}} \cdot \sum_{i}\left(1-x_{i}\right)
$$

Dividing both side by n as in the hint gives:

$$
\frac{1}{\hat{p}} \cdot \bar{x}=\frac{1}{1-\hat{p}} \cdot(1-\bar{x})
$$

And then, solving gives:

$$
\begin{aligned}
\bar{x}(1-\hat{p}) & =\hat{p}(1-\bar{x}) \\
\bar{x}-\bar{x} \cdot \hat{p} & =\hat{p}-\bar{x} \cdot \hat{p} \\
\bar{x} & =\hat{p}
\end{aligned}
$$

And again, we see that the MLE is just the sample mean.
4. Find the MLE estimator for the estimation of the parameters μ and σ^{2} from i.i.d. observations of a normally distributed random variable. Hint: We want to think of σ^{2} as a single parameter (not the square of a parameter). I recommend using $v=\sigma^{2}$ to keep this clear. Also, find $\hat{\mu}$ first. You can find the MLE for the mean without knowing the MLE of the variance.

Solution: This is where things get a bit more interesting. We have the following log-likelihood:

$$
\begin{aligned}
l\left(\mu, v ; x_{1}, \ldots, x_{n}\right) & =\sum_{i=1}^{n} \log \left[\frac{1}{\sqrt{2 \pi v}} \cdot e^{-\frac{1}{2 v}\left[x_{i}-\mu\right]^{2}}\right] \\
& =\sum_{i=1}^{n}(-1 / 2) \cdot \log (2 \pi v)-\frac{1}{2 v}\left[x_{i}-\mu\right]^{2}
\end{aligned}
$$

The derivative with respect to μ is:

$$
\frac{\partial}{\partial \mu} l\left(\mu, v ; x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} \frac{1}{v}\left[x_{i}-\mu\right]
$$

Setting this equal to zero gives:

$$
\begin{aligned}
& 0=\sum_{i=1}^{n}\left[x_{i}-\hat{\mu}\right] \\
& \hat{\mu}=\bar{x}
\end{aligned}
$$

Which is similar to the other results. The more interesting one is the variance. We see that the derivative is:

$$
\begin{aligned}
\frac{\partial}{\partial v} l\left(\mu, v ; x_{1}, \ldots, x_{n}\right) & =\sum_{i=1}^{n} \frac{-1 / 2}{2 \pi v} \cdot(2 \pi)+\frac{1}{2 v^{2}}\left[x_{i}-\mu\right]^{2} \\
& =\sum_{i=1}^{n} \frac{-1}{2 v}+\frac{1}{2 v^{2}}\left[x_{i}-\mu\right]^{2}
\end{aligned}
$$

Setting this equal to zero and plugging in the value that we know for $\hat{\mu}$, we get:

$$
\begin{aligned}
\sum_{i=1}^{n} \frac{1}{2 \hat{v}} & =\frac{1}{2 \hat{v}^{2}} \sum_{i=1}^{n}\left[x_{i}-\hat{\mu}\right]^{2} \\
\frac{2 n \hat{v}^{2}}{2 \hat{v}} & =\sum_{i=1}^{n}\left[x_{i}-\hat{\mu}\right]^{2} \\
\hat{v} & =\frac{1}{n} \sum_{i=1}^{n}\left[x_{i}-\hat{\mu}\right]^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n}\left[x_{i}-\bar{x}\right]^{2}
\end{aligned}
$$

So, this is very similar, but not quite the same, as the estimator S_{X}^{2} that we have been using so far.
5. What is the bias of the MLE estimator for the variance from a normal distribution with unknown mean and variance? Hint: Use what we know about S_{X}^{2} to make this relatively easy.

Solution: We know that the \hat{v} can be written in terms of S_{X}^{2} as follows:

$$
\hat{v}_{M L E}=\frac{n-1}{n} \cdot S_{X}^{2}
$$

So, the expected value is:

$$
\begin{aligned}
\mathbb{E} \hat{v}_{M L E} & =\frac{n-1}{n} \cdot \mathbb{E} S_{X}^{2} \\
& =\frac{n-1}{n} \cdot v
\end{aligned}
$$

And the bias is:

$$
\begin{aligned}
\mathbb{E} \hat{v}_{M L E}-v & =\frac{n-1}{n} \cdot v-v \\
& =v \cdot\left[\frac{n-1}{n}-1\right] \\
& =v \cdot\left[\frac{n-1}{n}-\frac{n}{n}\right] \\
& =v \cdot\left[\frac{-1}{n}\right] \\
& =\frac{-v}{n}
\end{aligned}
$$

So, the bias is not zero, but (as we know will be true of all MLE estimators) will limit to zero in the limit of $n \rightarrow \infty$.

