Worksheet 09 (Solutions)

1. Find the MLE estimator for the estimation of the parameter A

from ii.d. observations of an exponentialy distributed random vari-
able.

Solution: We have the following log-likelihood:
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The derivative with respect to A is:

9 "
ﬁl(/\,xl,...,xn):z 1%

,m:
>
I
™=
Kol

Il
_
Il
—

> =
I

M=
Re

I
—

I
n
i=1 Xi
1 R
17:)‘
= . 1’1 X;
n i=1"1

In other words, the MLE is just one divided by the sample mean. That
makes a lot of sense (but, again, not maybe very interesting) given that
A is the inverse of the mean for the exponential distribution.

2. Find the MLE estimator for the estimation of the variance from
iid. observations of an exponentialy distributed random variable.
Hint: This is easily derived from the previous result. Should not re-
quire any new derivatives.

Solution: We know that the variance of an exponentially distributed
random variable is A~2. We already have the MLE for A, so the MLE
of the variance is just this value to the —2 power:
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Notice that this is quite different than the typical estimator that we use
for estimating the variance of a sample (S%), taking into account the
special structure of the exponential distribution.

3. Find the MLE estimator for the estimation of the parameter p
from ii.d. observations of a Bernoulli distributed random variable.
Hint: When you set the derivative equal to zero, multiple by % to
write the equation in terms of just X and p.

Solution: We have the following log-likelihood:
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The derivative with respect to p is:
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Setting this equal to zero (and putting a hat on the parameter), gives
the following
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And again, we see that the MLE is just the sample mean.

4. Find the MLE estimator for the estimation of the parameters
# and ¢? from iid. observations of a normally distributed random
variable. Hint: We want to think of 02 as a single parameter (not the
square of a parameter). I recommend using v = 02 to keep this clear.
Also, find fi first. You can find the MLE for the mean without knowing
the MLE of the variance.



Solution: This is where things get a bit more interesting. We have
the following log-likelihood:
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The derivative with respect to y is:

0 1
al(y,v;xl,...,xn) = Zg[xi—y]

Setting this equal to zero gives:

Which is similar to the other results. The more interesting one is the
variance. We see that the derivative is:

d
gl(y,v;xl,...,xn) = E 5

Setting this equal to zero and plugging in the value that we know for
i, we get:
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So, this is very similar, but not quite the same, as the estimator S% that
we have been using so far.

5. What is the bias of the MLE estimator for the variance from a
normal distribution with unknown mean and variance? Hint: Use
what we know about S% to make this relatively easy.



Solution: We know that the 9 can be written in terms of Sg( as fol-
lows:
n—1
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So, the expected value is:
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And the bias is:
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So, the bias is not zero, but (as we know will be true of all MLE esti-
mators) will limit to zero in the limit of n — oo.



