Worksheet 10 (Solutions)

1. (Ratio Test) Let $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} \operatorname{Exp}(\lambda)$. What is the test statistic Λ for the corresponding likelihood ratio test for the null hypothesis $H_{0}: \lambda=1$.

Solution: In general for the exponential distribution the likelihood ratio test statistic will be:

$$
\begin{aligned}
\Lambda & =2 \cdot \sum_{i}\left[l(\hat{\lambda})-l\left(\lambda_{0}\right)\right] \\
& =2 \cdot \sum_{i}\left[\log (\hat{\lambda})-\hat{\lambda} x_{i}-\log \left(\lambda_{0}\right)+\lambda_{0} x_{i}\right] \\
& =2 \cdot\left[\sum_{i} \log (\hat{\lambda})-\hat{\lambda} \sum_{i} x_{i}-\sum_{i} \log \left(\lambda_{0}\right)+\sum_{i} \lambda_{0} x_{i}\right] \\
& =2 \cdot\left[n \log (\hat{\lambda})-\hat{\lambda} n \cdot \bar{x}-n \log \left(\lambda_{0}\right)+\lambda_{0} \cdot n \bar{x}\right] \\
& =2 \cdot n\left[\log (\hat{\lambda})-\hat{\lambda} \bar{x}-\log \left(\lambda_{0}\right)+\lambda_{0} \bar{x}\right]
\end{aligned}
$$

We know from last time that $\hat{\lambda}=\bar{x}^{-1}$ and have that $\lambda_{0}=1$ from the null-hypothesis. So:

$$
\begin{aligned}
\Lambda & =2 \cdot n\left[\log \left(\bar{x}^{-1}\right)-\bar{x}^{-1} \bar{x}-\log (1)+1 \cdot \bar{x}\right] \\
& =2 \cdot n[-\log (\bar{x})-1-0+\bar{x}] \\
& =2 \cdot n[\bar{x}-\log (\bar{x})-1] .
\end{aligned}
$$

And that's as much as we can simplify.
2. (Ratio Test) Let $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} \operatorname{Poisson}(\lambda)$. What is the test statistic Λ for the corresponding likelihood ratio test for the null hypothesis $H_{0}: \lambda=1$.

Solution: In general for the Poisson distribution, the likelihood ratio test statistic will be:

$$
\begin{aligned}
\Lambda & =2 \cdot \sum_{i}\left[l(\hat{\lambda})-l\left(\lambda_{0}\right)\right] \\
& =2 \cdot \sum_{i}\left[x_{i} \log (\hat{\lambda})-\hat{\lambda}-\log \left(x_{i}!\right)-x_{i} \log \left(\lambda_{0}\right)+\lambda_{0}+\log \left(x_{i}!\right)\right] \\
& =2 \cdot n\left[\bar{x} \log (\hat{\lambda})-\hat{\lambda}-\bar{x} \log \left(\lambda_{0}\right)+\lambda_{0}\right]
\end{aligned}
$$

We know that $\hat{\lambda}=\bar{x}$ for a Poisson MLE and have $\lambda_{0}=1$ from the
null-hypothesis, so:

$$
\begin{aligned}
\Lambda & =2 \cdot n\left[\bar{x} \log (\bar{x})-\bar{x}-\bar{x} \log (1)+\lambda_{0}\right] \\
& =2 \cdot n\left[\bar{x} \log (\bar{x})-\bar{x}+\lambda_{0}\right] \\
& =2 \cdot n[\bar{x} \log (\bar{x})-\bar{x}+1]
\end{aligned}
$$

And that's about all that we can do.
3. (Ratio Test) Let $X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim} \operatorname{Bernoulli}(p)$. What is the test statistic Λ for the corresponding likelihood ratio test for the null hypothesis $H_{0}: p=0.2$.

Solution: One more, same idea. In general for the Bernouilli distribution, the likelihood ratio test statistic will be:

$$
\begin{aligned}
\Lambda & =2 \cdot \sum_{i}\left[l(\hat{p})-l\left(p_{0}\right)\right] \\
& =2 \cdot \sum_{i}\left[x_{i} \log (\hat{p})+\left(1-x_{i}\right) \log (1-\hat{p})-x_{i} \log \left(p_{0}\right)-\left(1-x_{i}\right) \log \left(1-p_{0}\right)\right] \\
& =2 \cdot n\left[\bar{x} \log (\hat{p})+(1-\bar{x}) \log (1-\hat{p})-\bar{x} \log \left(p_{0}\right)-(1-\bar{x}) \log \left(1-p_{0}\right)\right]
\end{aligned}
$$

Plugging in the $\operatorname{MLE}(\hat{p}=\bar{x})$ and the null hypothesis $\left(p_{0}=0.2\right)$, we have:
$\Lambda=2 \cdot n[\bar{x} \log (\bar{x})+(1-\bar{x}) \log (1-\bar{x})-\bar{x} \log (0.2)-(1-\bar{x}) \log (1-0.2)]$
And again, there's not much more to simplify here. We could easily compute the value of Λ for a particular dataset, and then compare the a chi-squared distribution.
4. (Ratio Test) Let $X \sim \operatorname{Bin}\left(n, p_{1}\right)$ and $Y \sim \operatorname{Bin}\left(n, p_{2}\right)$ be independent random variables, assuming that n is a known quantity. We want to test the hypothesis that $H_{0}: p_{1}=p_{2}$. What are the corresponding Θ and Θ_{0} in our updated formulation of hypothesis testing? ${ }^{1}$ If we use a Likelihood Ratio Test for this hypothesis, how many degrees of
${ }^{1}$ We will derive the actual test itself in a more general form next class.

Solution: We will write values of the parameter $\theta=\left(p_{1}, p_{2}\right)$. These can be any values between 0 and 1 , so $\Theta=[0,1] \times[0,1] \subset \mathbb{R}^{2}$. The null-hypothesis is then the subset of this where the two values are equal: $\Theta_{0}=\{(x, y) \mid x=y, x \in[0,1]\} \subset \Theta$. Visually, this is a line of values between the origin and the point $(1,1)$. The difference in dimensionality is $2-1=1$, so $\Lambda \sim \chi^{2}(1)$.
5. (Ratio Test) Recall that we used the one-sample ANOVA test with the null-hypothesis that the means of K samples are all the same.

Write down and describe the values of Θ and Θ_{0} that correspond to this test. If we use a Likelihood Ratio Test for this hypothesis, how many degrees of freedom should Λ have?

Solution: Here, we will let $\theta=\left(\mu_{1}, \ldots, \mu_{k}, \sigma^{2}\right) \in \mathbb{R}^{k+1}$. For the parameter space we have:

$$
\begin{aligned}
\Theta & =\mathbb{R}^{k} \times(0, \infty) \\
& =\left\{\left(x_{1}, \ldots, x_{k}, x_{k+1}\right) \mid x_{k+1}>0\right\}
\end{aligned}
$$

The null hypothesis is the set where the first k elements are equal:

$$
\Theta_{0}=\left\{\left(x_{1}, \ldots, x_{k}, x_{k+1}\right) \mid x_{i}=x_{j}(i<=k, j<=k), x_{k+1}>0\right\}
$$

6. (MLE Practice) Let $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} \operatorname{Uniform}(0, a)$. Find the MLE estimator for a. Note: You cannot do this using the derivative. Just think about it!

Solution: The density $f(x)$ of the uniform distribution from 0 to a will be $1 / a$ if $x \in[0, a]$ and zero otherwise. So, to maximize the likelihood, clearly we need to have $a \leq \max _{i}\left\{x_{i}\right\}$ (otherwise the likelihood is zero). But, as long as the maximum is no larger than a, the likelihood decreases with with a larger a. So, $\hat{a}=\max _{i}\left\{x_{i}\right\}$. If that's not clear, ask me to draw you a picture in class!

