Worksheet 15 (Solutions)

1. Consider a simple linear regression where the first n/2 values of x_i are zero and the second n/2 values of x_i are 1. We can use this to model the mean of a variable that depends on whether the corresponding x_i is in group 0 or group 1. Specifically, how do the means of Y_i in these two groups correspond to the parameters b_0 and b_1 ?

Solution: The parameter b_0 is the mean of Y_i in group 0 and the parameter b_1 gives the increase of the mean in group 1. So, group 1 has mean $b_0 + b_1$. Notice that checking the hypothesis $H_0 : b_1 = 0$ is the same as checking where there is no difference in mean across the two groups.

2. Let \bar{y}_A be the mean of the first n/2 values of Y_i and let \bar{y}_B be the mean of the second n/2 values of Y_i . Consider the following form of the MLE for \hat{b}_1 :¹

$$\widehat{b}_1 = rac{\sum_i (y_i - \overline{y})(x_i)}{\sum_i (x_i - \overline{x})^2}.$$

Find a simple formula for \hat{b}_1 in terms of \bar{y}_A and \bar{y}_B .

Solution: Note that $\bar{y} = \frac{1}{2} \cdot (\bar{y}_A + \bar{y}_B)$, an important identity that we will use below. Then, plugging in the definition, we have:

$$\begin{aligned} \hat{b}_{1} &= \frac{\sum_{i} (y_{i} - \bar{y})(x_{i})}{\sum_{i} (x_{i} - \bar{x})^{2}} \\ &= \frac{\sum_{i=n/2+1}^{n} (y_{i} - \bar{y})}{n/4} \\ &= \frac{4}{n} \times \sum_{i=n/2+1}^{n} (y_{i} - \bar{y}) \\ &= \frac{4}{n} \times \left[\frac{n}{2} \bar{y}_{b} - \frac{n}{2} \bar{y}\right] \\ &= 2 \left[\bar{y}_{b} - \bar{y} \right] \\ &= 2 \left[\bar{y}_{b} - \frac{1}{2} \cdot (\bar{y}_{A} + \bar{y}_{B}) \right] \\ &= \bar{y}_{B} - \bar{y}_{A}. \end{aligned}$$

3. Continuing from the previous question, find a simple formula for \hat{b}_0 in terms of \bar{y}_A and \bar{y}_B .

Solution: Here we have, by plugging from the previous equation,

¹ It can be shown that it is equivalent to the form on Worksheet 14.

the following:

$$\begin{split} \widehat{b}_{0} &= \bar{y} - (\bar{y}_{B} - \bar{y}_{A}) \cdot \bar{x} \\ &= \frac{1}{2} \cdot (\bar{y}_{A} + \bar{y}_{B}) - (\bar{y}_{B} - \bar{y}_{A}) \cdot \frac{1}{2} \\ &= \frac{1}{2} \cdot (\bar{y}_{A} + \bar{y}_{B} - \bar{y}_{B} - \bar{y}_{A}) \\ &= \frac{1}{2} \cdot (2\bar{y}_{A}) \\ &= \bar{y}_{A} \end{split}$$

4. What is the connection between the linear regression here and a two-sample T-test for the means across the two groups?

Solution: They are exactly equivalent techniques! Just one reason that some people claim regressions are really all that you need.