Worksheet 15 (Solutions)

1. Consider a simple linear regression where the first $n / 2$ values of x_{i} are zero and the second $n / 2$ values of x_{i} are 1 . We can use this to model the mean of a variable that depends on whether the corresponding x_{i} is in group o or group 1. Specifically, how do the means of Y_{i} in these two groups correspond to the parameters b_{0} and b_{1} ?

Solution: The parameter b_{0} is the mean of Y_{i} in group o and the parameter b_{1} gives the increase of the mean in group 1. So, group 1 has mean $b_{0}+b_{1}$. Notice that checking the hypothesis $H_{0}: b_{1}=0$ is the same as checking where there is no difference in mean across the two groups.
2. Let \bar{y}_{A} be the mean of the first $n / 2$ values of Y_{i} and let \bar{y}_{B} be the mean of the second $n / 2$ values of Y_{i}. Consider the following form of the MLE for $\widehat{b}_{1}:{ }^{1}$

$$
\widehat{b}_{1}=\frac{\sum_{i}\left(y_{i}-\bar{y}\right)\left(x_{i}\right)}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}
$$

Find a simple formula for \widehat{b}_{1} in terms of \bar{y}_{A} and \bar{y}_{B}.
Solution: Note that $\bar{y}=\frac{1}{2} \cdot\left(\bar{y}_{A}+\bar{y}_{B}\right)$, an important identity that we will use below. Then, plugging in the definition, we have:

$$
\begin{aligned}
\widehat{b}_{1} & =\frac{\sum_{i}\left(y_{i}-\bar{y}\right)\left(x_{i}\right)}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}} \\
& =\frac{\sum_{i=n / 2+1}^{n}\left(y_{i}-\bar{y}\right)}{n / 4} \\
& =\frac{4}{n} \times \sum_{i=n / 2+1}^{n}\left(y_{i}-\bar{y}\right) \\
& =\frac{4}{n} \times\left[\frac{n}{2} \bar{y}_{b}-\frac{n}{2} \bar{y}\right] \\
& =2\left[\bar{y}_{b}-\bar{y}\right] \\
& =2\left[\bar{y}_{b}-\frac{1}{2} \cdot\left(\bar{y}_{A}+\bar{y}_{B}\right)\right] \\
& =\bar{y}_{B}-\bar{y}_{A} .
\end{aligned}
$$

3. Continuing from the previous question, find a simple formula for \widehat{b}_{0} in terms of \bar{y}_{A} and \bar{y}_{B}.

Solution: Here we have, by plugging from the previous equation,
${ }^{1}$ It can be shown that it is equivalent to the form on Worksheet 14 .
the following:

$$
\begin{aligned}
\widehat{b}_{0} & =\bar{y}-\left(\bar{y}_{B}-\bar{y}_{A}\right) \cdot \bar{x} \\
& =\frac{1}{2} \cdot\left(\bar{y}_{A}+\bar{y}_{B}\right)-\left(\bar{y}_{B}-\bar{y}_{A}\right) \cdot \frac{1}{2} \\
& =\frac{1}{2} \cdot\left(\bar{y}_{A}+\bar{y}_{B}-\bar{y}_{B}-\bar{y}_{A}\right) \\
& =\frac{1}{2} \cdot\left(2 \bar{y}_{A}\right) \\
& =\bar{y}_{A}
\end{aligned}
$$

4. What is the connection between the linear regression here and a two-sample T-test for the means across the two groups?

Solution: They are exactly equivalent techniques! Just one reason that some people claim regressions are really all that you need.

