Worksheet 18 (Solutions)

1. Consider a prior distribution where $\lambda \sim \operatorname{Gamma}(\alpha, \beta)$ and a likelihood $X_{j} \mid \lambda \sim \operatorname{Poisson}(\lambda)$ for an i.i.d. sample of size n. Find (a) the posterior distribution, (b) the Bayesian point estimator, and (c) the limit of the point estimator when the data dominates the prior.

Solution: For (a), we have:

$$
\begin{aligned}
f_{\lambda \mid \vec{x}}(\lambda \mid \vec{x}) & \propto\left[\prod_{j} f_{x_{j} \mid \lambda}\left(x_{j}\right)\right] \times f_{\lambda} \\
& \propto\left[\prod_{j} \frac{\lambda^{x_{i}} e^{-\lambda}}{x_{i}!}\right] \times\left[\frac{1}{\Gamma(\alpha) \beta^{\alpha}} \cdot \lambda^{\alpha-1} e^{-\lambda / \beta}\right] \\
& \propto \lambda^{\Sigma_{i} x_{i}} \cdot e^{-n \lambda} \cdot \lambda^{\alpha-1} \cdot e^{-\lambda / \beta} \\
& \propto \lambda^{\alpha+\sum_{i} x_{i}-1} \cdot e^{-\lambda\left[\beta^{-1}+n\right]} \\
& \sim \operatorname{Gamma}\left(\alpha+\sum_{i} x_{i},\left[\beta^{-1}+n\right]^{-1}\right) .
\end{aligned}
$$

Now that we know the posterior distribution, the answer to (b) comes from the reference table:

$$
\hat{\lambda}_{\text {Bayes }}=\mathbb{E}[\lambda \mid \vec{X}]=\frac{\alpha+\sum_{i} x_{i}}{\beta^{-1}+n} .
$$

Finally, in the limit of large data, we see that (c) we have:

$$
\hat{\lambda}_{\text {Bayes }} \rightarrow \frac{\sum_{i} x_{i}}{n}=\bar{x} .
$$

So, in the limit of large data, the Bayes estimator limits to the MLE.
2. Assume you have a sample of size $n=10$ from a Poisson distribution. The average of the data is $\bar{x}=3$. What are the (a) MLE estimator of λ, (b) the Bayesian estimator of λ with a $\operatorname{Gamma}(1,1)$, and (c) the Bayesian estimator of λ with a $\operatorname{Gamma}(10,1) ?^{1}$

Solution: (a) The MLE is:

$$
\hat{\lambda}_{M L E}=\bar{x}=3 .
$$

(b) The Bayes estimator with this prior is:

$$
\hat{\lambda}_{\text {Bayes }}=\frac{\alpha+\sum_{i} x_{i}}{\beta^{-1}+n}=\frac{1+30}{1+10}=\frac{31}{11}=2.818
$$

(c) The Bayes estimator with this prior is:

$$
\hat{\lambda}_{\text {Bayes }}=\frac{\alpha+\sum_{i} x_{i}}{\beta^{-1}+n}=\frac{10+30}{1+10}=\frac{41}{11}=3.727
$$

${ }^{1}$ Take a moment to compare the results and see how the relate the means of the two priors.
3. Consider a prior distribution where $\lambda \sim \operatorname{Gamma}(\alpha, \beta)$ and a likelihood $X \mid \lambda \sim \operatorname{Exp}(\lambda)$ for an i.i.d. sample of size n.. Find (a) the posterior distribution, (b) the Bayesian point estimator, and (c) the limit of the point estimator when the data dominates the prior.

Solution: For (a), we have:

$$
\begin{aligned}
f_{\lambda \mid \vec{x}}(\lambda \mid \vec{x}) & \propto\left[\prod_{j} f_{x_{j} \mid \lambda}\left(x_{j}\right)\right] \times f_{\lambda} \\
& \propto\left[\prod_{j} \lambda e^{-\lambda x_{i}}\right] \times\left[\frac{1}{\Gamma(\alpha) \beta^{\alpha}} \cdot \lambda^{\alpha-1} e^{-\lambda / \beta}\right] \\
& \propto \lambda^{n} e^{-\lambda \sum_{i} x_{i}} \lambda^{\alpha-1} e^{-\lambda / \beta} \\
& \propto \lambda^{\alpha+n-1} e^{-\lambda\left[\sum_{i} x_{i}+\beta^{-1}\right]} \\
& \sim \operatorname{Gamma}\left(\alpha+n,\left[\sum_{i} x_{i}+\beta^{-1}\right]^{-1}\right)
\end{aligned}
$$

The point estimator (b) comes from the table, just as in the first question:

$$
\hat{\lambda}_{\text {Bayes }}=\mathbb{E}[\lambda \mid \vec{X}]=\frac{\alpha+n}{\sum_{i} x_{i}+\beta^{-1}}
$$

Finally, in the limit of large data, we see that (c) we have:

$$
\hat{\lambda}_{\text {Bayes }} \rightarrow \frac{n}{\sum_{i} x_{i}}=\bar{x}^{-1}
$$

So, in the limit of large data, once again the Bayes estimator limits to the MLE.
4. Assume you have a sample of size $n=30$ from an Exponential. The average of the data is $\bar{x}=0.5$. What are the (a) MLE estimator of λ, (b) the Bayesian estimator of λ with a $\operatorname{Gamma}(1,1)$, and (c) the Bayesian estimator of λ with a $\operatorname{Gamma}(1,4)$?

Solution: (a) The MLE is:

$$
\hat{\lambda}_{M L E}=\frac{1}{\bar{x}}=\frac{1}{0.5}=2
$$

(b) The Bayes estimator with this prior is:

$$
\hat{\lambda}_{\text {Bayes }}=\frac{\alpha+n}{\sum_{i} x_{i}+\beta^{-1}}=\frac{1+30}{15+1}=\frac{31}{16}=1.938
$$

(c) The Bayes estimator with this prior is:

$$
\hat{\lambda}_{\text {Bayes }}=\frac{\alpha+n}{\sum_{i} x_{i}+\beta^{-1}}=\frac{1+30}{15+0.25}=\frac{31}{15.25}=2.032
$$

5. Consider a prior distribution where $p \sim \operatorname{Beta}(a, b)$ and a likelihood $X \mid p \sim \operatorname{Geometric}(1, \beta)$ for an i.i.d. sample of size n. Find (a) the posterior distribution, (b) the Bayesian point estimator, and (c) the limit of the point estimator when the data dominates the prior.

Solution: For (a), we have:

$$
\begin{aligned}
f_{p \mid \vec{x}}(p \mid \vec{x}) & \propto\left[\prod_{j} f_{x_{j} \mid p}\left(x_{j}\right)\right] \times f_{p} \\
& \propto\left[\prod_{j}(1-p)^{x_{i}-1} \cdot p\right] \times\left[\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} \cdot p^{a-1}(1-p)^{b-1}\right] \\
& \propto(1-p)^{\sum_{i} x_{i}-n} \cdot p^{n} \cdot p^{a-1} \cdot(1-p)^{b-1} \\
& \propto(1-p)^{b+\sum_{i} x_{i}-n-1} \cdot p^{a+n-1} \\
& \sim \operatorname{Beta}\left(a+n, b+\sum_{i} x_{i}-n\right)
\end{aligned}
$$

The point estimator (b) comes from the table, just as in the first question:

$$
\hat{p}_{\text {Bayes }}=\mathbb{E}[p \mid \vec{X}]=\frac{a+n}{a+n+b+\sum_{i} x_{i}-n}=\frac{a+n}{a+b+\sum_{i} x_{i}}
$$

Finally, in the limit of large data, we see that (c) we have:

$$
\hat{p}_{\text {Bayes }} \rightarrow \frac{n}{\sum_{i} x_{i}}=\frac{1}{\bar{x}}
$$

So, in the limit of large data, the Bayes estimator limits to the MLE.
6. Assume you have a sample of size $n=12$ from a Geometric distribution. The average of the data is $\bar{x}=2$. What are the (a) MLE estimator of $p,(\mathrm{~b})$ the Bayesian estimator of λ with a $\operatorname{Beta}(1,10)$, and (c) the Bayesian estimator of λ with a $\operatorname{Beta}(10,1)$? What are the means of the two priors?

Solution: (a) The MLE is:

$$
\hat{p}_{M L E}=\frac{1}{\bar{x}}=\frac{1}{2}=0.5
$$

(b) The Bayes estimator with this prior is:

$$
\hat{p}_{\text {Bayes }}=\frac{a+n}{a+b+\sum_{i} x_{i}}=\frac{1+12}{1+10+24}=\frac{13}{35}=0.371
$$

(c) The Bayes estimator with this prior is:

$$
\hat{p}_{\text {Bayes }}=\frac{a+n}{a+b+\sum_{i} x_{i}}=\frac{10+12}{10+1+24}=\frac{22}{35}=0.629
$$

