Worksheet 19 (Solutions)

1. Let X ~ N(p,0?), with ¢ > 0 a fixed and known constant. (a)
Compute the Fisher Information Z(y). (b) The MLE for y is equal to
X (generally it’s the mean, but in the one-observation case the mean is
equal to X). Find the efficency of the MLE.

Solution: (a) We have the following for the first derivative the of the
log likelihood:
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Then, the Fisher information is:

(b) The variance of the MLE is equal to:
Var(fi) = Var(X) = o2
And therefore the efficency is:
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So, the MLE is optimally efficent. It does as well as any unbiased
estimator can do in terms of predicting the value of y from the data.

2. Let X ~ Poisson()). (a) Compute the Fisher Information Z(A).
(b) The MLE for A is equal to X (generally it’s the mean, but in the
one-observation case the mean is equal to X). Find the efficency of the
MLE.



Solution: (a) We have the following for the first derivative the of the
log likelihood:
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(b) The variance of the MLE is equal to:
Var(A) = Var(X) = A.
And therefore the efficency is:
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So, the MLE is optimally efficent. It does as well as any unbiased
estimator can do in terms of predicting the value of A from the data.

3. Let X ~ Binomial(n, p) with n > 0 a fixed and known constant.
(a) Compute the Fisher Information Z(p).* (b) The MLE for p is equal
to X/n. Find the efficency of the MLE.

Solution: (a) We have the following for the first derivative the of the
log likelihood:
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And for the second derivative:
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*Try to simplify this as much as pos-
sible. You should be able to get some-
thing that has a denominator equal to

p(1—p).



Then, the Fisher information is:
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(b) The variance of the MLE is equal to:

Var(p) = Var(X/n) = np(iﬂ_ p) = pl —P).

And therefore the efficency is:
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So, the MLE is optimally efficent. It does as well as any unbiased
estimator can do in terms of predicting the value of p from the data.



