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Worksheet 19 (Solutions)

1. Let X ∼ N(µ, σ2), with σ2 > 0 a fixed and known constant. (a)
Compute the Fisher Information I(µ). (b) The MLE for µ is equal to
X (generally it’s the mean, but in the one-observation case the mean is
equal to X). Find the efficency of the MLE.

Solution: (a) We have the following for the first derivative the of the
log likelihood:

∂

∂µ
log( f (µ; x)) =

∂

∂µ

[
−1
2σ2 (x − µ)2

]
=

+2
2σ2 (x − µ)

=
1
σ2 (x − µ)

And for the second derivative:

∂2

∂2µ
log( f (µ; x)) =

∂

∂µ

[
1
σ2 (x − µ)

]
=

−1
σ2 .

Then, the Fisher information is:

I(µ) = −E

[
∂2

∂µ2 log f (µ; x)
]

= E

[
1
σ2

]
=

1
σ2 .

(b) The variance of the MLE is equal to:

Var(µ̂) = Var(X) = σ2.

And therefore the efficency is:

e(µ̂) =
I(θ)−1

Var(θ̂)
=

σ2

σ2 = 1.

So, the MLE is optimally efficent. It does as well as any unbiased
estimator can do in terms of predicting the value of µ from the data.

2. Let X ∼ Poisson(λ). (a) Compute the Fisher Information I(λ).
(b) The MLE for λ is equal to X (generally it’s the mean, but in the
one-observation case the mean is equal to X). Find the efficency of the
MLE.
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Solution: (a) We have the following for the first derivative the of the
log likelihood:

∂

∂λ
log( f (λ; x)) =

∂

∂λ
[x log(λ)− λ + log(x!)]

=
x
λ
− 1.

And for the second derivative:

∂2

∂2λ
log( f (λ; x)) =

∂

∂λ

[ x
λ
− 1

]
=

−x
λ2 .

Then, the Fisher information is:

I(λ) = −E

[
∂2

∂λ2 log f (λ; x)
]

= E
[ x

λ2

]
=

λ

λ2 =
1
λ

.

(b) The variance of the MLE is equal to:

Var(λ̂) = Var(X) = λ.

And therefore the efficency is:

e(λ̂) =
I(θ)−1

Var(θ̂)
=

λ

λ
= 1.

So, the MLE is optimally efficent. It does as well as any unbiased
estimator can do in terms of predicting the value of λ from the data.

3. Let X ∼ Binomial(n, p) with n > 0 a fixed and known constant.
(a) Compute the Fisher Information I(p).1 (b) The MLE for p is equal 1 Try to simplify this as much as pos-

sible. You should be able to get some-
thing that has a denominator equal to
p(1 − p).

to X/n. Find the efficency of the MLE.

Solution: (a) We have the following for the first derivative the of the
log likelihood:

∂

∂p
log( f (p; x)) =

∂

∂p

[
log(

(
n
x

)
) + x · log(p) + (n − x) · log(1 − p)

]
=

x
p
− n − x

1 − p
.

And for the second derivative:

∂2

∂2 p
log( f (p; x)) =

∂

∂p

[
x
p
− n − x

1 − p

]
=

−x
p2 − n − x

(1 − p)2
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Then, the Fisher information is:

I(p) = −E

[
∂2

∂p2 log f (p; x)
]

= E

[
x
p2 +

n − x
(1 − p)2

]
=

np
p2 +

n − np
(1 − p)2

=
n
p
+

n(1 − p)
(1 − p)2

=
n
p
+

n
(1 − p)

= n ·
[

1
p
+

1
1 − p

]
= n ·

[
(1 − p) + p

p(1 − p)

]
= n ·

[
1

p(1 − p)

]
=

n
p(1 − p)

(b) The variance of the MLE is equal to:

Var( p̂) = Var(X/n) =
np(1 − p)

n2 =
p(1 − p)

n
.

And therefore the efficency is:

e( p̂) =
I(θ)−1

Var(θ̂)
=

p(1−p)
n

p(1−p)
n

= 1.

So, the MLE is optimally efficent. It does as well as any unbiased
estimator can do in terms of predicting the value of p from the data.


