Worksheet 19 (Solutions)

1. Let $X \sim N\left(\mu, \sigma^{2}\right)$, with $\sigma^{2}>0$ a fixed and known constant. (a) Compute the Fisher Information $\mathcal{I}(\mu)$. (b) The MLE for μ is equal to X (generally it's the mean, but in the one-observation case the mean is equal to X). Find the efficency of the MLE.

Solution: (a) We have the following for the first derivative the of the log likelihood:

$$
\begin{aligned}
\frac{\partial}{\partial \mu} \log (f(\mu ; x)) & =\frac{\partial}{\partial \mu}\left[\frac{-1}{2 \sigma^{2}}(x-\mu)^{2}\right] \\
& =\frac{+2}{2 \sigma^{2}}(x-\mu) \\
& =\frac{1}{\sigma^{2}}(x-\mu)
\end{aligned}
$$

And for the second derivative:

$$
\begin{aligned}
\frac{\partial^{2}}{\partial^{2} \mu} \log (f(\mu ; x)) & =\frac{\partial}{\partial \mu}\left[\frac{1}{\sigma^{2}}(x-\mu)\right] \\
& =\frac{-1}{\sigma^{2}}
\end{aligned}
$$

Then, the Fisher information is:

$$
\begin{aligned}
\mathcal{I}(\mu) & =-\mathbb{E}\left[\frac{\partial^{2}}{\partial \mu^{2}} \log f(\mu ; x)\right] \\
& =\mathbb{E}\left[\frac{1}{\sigma^{2}}\right] \\
& =\frac{1}{\sigma^{2}}
\end{aligned}
$$

(b) The variance of the MLE is equal to:

$$
\operatorname{Var}(\hat{\mu})=\operatorname{Var}(X)=\sigma^{2}
$$

And therefore the efficency is:

$$
e(\hat{\mu})=\frac{\mathcal{I}(\theta)^{-1}}{\operatorname{Var}(\hat{\theta})}=\frac{\sigma^{2}}{\sigma^{2}}=1
$$

So, the MLE is optimally efficent. It does as well as any unbiased estimator can do in terms of predicting the value of μ from the data.
2. Let $X \sim \operatorname{Poisson}(\lambda)$. (a) Compute the Fisher Information $\mathcal{I}(\lambda)$. (b) The MLE for λ is equal to X (generally it's the mean, but in the one-observation case the mean is equal to X). Find the efficency of the MLE.

Solution: (a) We have the following for the first derivative the of the log likelihood:

$$
\begin{aligned}
\frac{\partial}{\partial \lambda} \log (f(\lambda ; x)) & =\frac{\partial}{\partial \lambda}[x \log (\lambda)-\lambda+\log (x!)] \\
& =\frac{x}{\lambda}-1
\end{aligned}
$$

And for the second derivative:

$$
\begin{aligned}
\frac{\partial^{2}}{\partial^{2} \lambda} \log (f(\lambda ; x)) & =\frac{\partial}{\partial \lambda}\left[\frac{x}{\lambda}-1\right] \\
& =\frac{-x}{\lambda^{2}}
\end{aligned}
$$

Then, the Fisher information is:

$$
\begin{aligned}
\mathcal{I}(\lambda) & =-\mathbb{E}\left[\frac{\partial^{2}}{\partial \lambda^{2}} \log f(\lambda ; x)\right] \\
& =\mathbb{E}\left[\frac{x}{\lambda^{2}}\right] \\
& =\frac{\lambda}{\lambda^{2}}=\frac{1}{\lambda}
\end{aligned}
$$

(b) The variance of the MLE is equal to:

$$
\operatorname{Var}(\hat{\lambda})=\operatorname{Var}(X)=\lambda
$$

And therefore the efficency is:

$$
e(\hat{\lambda})=\frac{\mathcal{I}(\theta)^{-1}}{\operatorname{Var}(\hat{\theta})}=\frac{\lambda}{\lambda}=1
$$

So, the MLE is optimally efficent. It does as well as any unbiased estimator can do in terms of predicting the value of λ from the data.
3. Let $X \sim \operatorname{Binomial}(n, p)$ with $n>0$ a fixed and known constant. (a) Compute the Fisher Information $\mathcal{I}(p) .{ }^{1}$ (b) The MLE for p is equal to X / n. Find the efficency of the MLE.

Solution: (a) We have the following for the first derivative the of the log likelihood:

$$
\begin{aligned}
\frac{\partial}{\partial p} \log (f(p ; x)) & =\frac{\partial}{\partial p}\left[\log \left(\binom{n}{x}\right)+x \cdot \log (p)+(n-x) \cdot \log (1-p)\right] \\
& =\frac{x}{p}-\frac{n-x}{1-p}
\end{aligned}
$$

And for the second derivative:

$$
\begin{aligned}
\frac{\partial^{2}}{\partial^{2} p} \log (f(p ; x)) & =\frac{\partial}{\partial p}\left[\frac{x}{p}-\frac{n-x}{1-p}\right] \\
& =\frac{-x}{p^{2}}-\frac{n-x}{(1-p)^{2}}
\end{aligned}
$$

${ }^{1}$ Try to simplify this as much as possible. You should be able to get something that has a denominator equal to $p(1-p)$.

Then, the Fisher information is:

$$
\begin{aligned}
\mathcal{I}(p) & =-\mathbb{E}\left[\frac{\partial^{2}}{\partial p^{2}} \log f(p ; x)\right] \\
& =\mathbb{E}\left[\frac{x}{p^{2}}+\frac{n-x}{(1-p)^{2}}\right] \\
& =\frac{n p}{p^{2}}+\frac{n-n p}{(1-p)^{2}} \\
& =\frac{n}{p}+\frac{n(1-p)}{(1-p)^{2}} \\
& =\frac{n}{p}+\frac{n}{(1-p)} \\
& =n \cdot\left[\frac{1}{p}+\frac{1}{1-p}\right] \\
& =n \cdot\left[\frac{(1-p)+p}{p(1-p)}\right] \\
& =n \cdot\left[\frac{1}{p(1-p)}\right] \\
& =\frac{n}{p(1-p)}
\end{aligned}
$$

(b) The variance of the MLE is equal to:

$$
\operatorname{Var}(\hat{p})=\operatorname{Var}(X / n)=\frac{n p(1-p)}{n^{2}}=\frac{p(1-p)}{n}
$$

And therefore the efficency is:

$$
e(\hat{p})=\frac{\mathcal{I}(\theta)^{-1}}{\operatorname{Var}(\hat{\theta})}=\frac{\frac{p(1-p)}{n}}{\frac{p(1-p)}{n}}=1 .
$$

So, the MLE is optimally efficent. It does as well as any unbiased estimator can do in terms of predicting the value of p from the data.

