Worksheet 15

1. Consider a simple linear regression where the first n/2 values of x_i are zero and the second n/2 values of x_i are 1. We can use this to model the mean of a variable that depends on whether the corresponding x_i is in group 0 or group 1. Specifically, how do the means of Y_i in these two groups correspond to the parameters b_0 and b_1 ?

2. Let \bar{y}_A be the mean of the first n/2 values of Y_i and let \bar{y}_B be the mean of the second n/2 values of Y_i . Consider the following form of the MLE for \hat{b}_1 :¹

$$\widehat{b}_1 = \frac{\sum_i (y_i - \overline{y})(x_i)}{\sum_i (x_i - \overline{x})^2}$$

Find a simple formula for \hat{b}_1 in terms of \bar{y}_A and \bar{y}_B .

3. Continuing from the previous question, find a simple formula for \hat{b}_0 in terms of \bar{y}_A and \bar{y}_B .

4. What is the connection between the linear regression here and a two-sample T-test for the means across the two groups?

¹ It can be shown that it is equivalent to the form on Worksheet 14.