Worksheet 18

1. Consider a prior distribution where $\lambda \sim Gamma(\alpha, \beta)$ and a likelihood $X_j | \lambda \sim Poisson(\lambda)$ for an i.i.d. sample of size *n*. Find (a) the posterior distribution, (b) the Bayesian point estimator, and (c) the limit of the point estimator when the data dominates the prior.

2. Assume you have a sample of size n = 10 from a Poisson distribution. The average of the data is $\bar{x} = 3$. What are the (a) MLE estimator of λ , (b) the Bayesian estimator of λ with a *Gamma*(1,1), and (c) the Bayesian estimator of λ with a *Gamma*(10,1)?¹

3. Consider a prior distribution where $\lambda \sim Gamma(\alpha, \beta)$ and a likelihood $X|\lambda \sim Exp(\lambda)$ for an i.i.d. sample of size *n*.. Find (a) the posterior distribution, (b) the Bayesian point estimator, and (c) the limit of the point estimator when the data dominates the prior.

4. Assume you have a sample of size n = 30 from an Exponential. The average of the data is $\bar{x} = 0.5$. What are the (a) MLE estimator of λ , (b) the Bayesian estimator of λ with a Gamma(1, 1), and (c) the Bayesian estimator of λ with a Gamma(1, 4)?

5. Consider a prior distribution where $p \sim Beta(a, b)$ and a likelihood $X|p \sim Geometric(1, \beta)$ for an i.i.d. sample of size *n*. Find (a) the posterior distribution, (b) the Bayesian point estimator, and (c) the limit of the point estimator when the data dominates the prior.

6. Assume you have a sample of size n = 12 from a Geometric distribution. The average of the data is $\bar{x} = 2$. What are the (a) MLE estimator of p, (b) the Bayesian estimator of λ with a Beta(1,10), and (c) the Bayesian estimator of λ with a Beta(10,1)? What are the means of the two priors?

¹ Take a moment to compare the results and see how the relate the means of the two priors.