
JavaScript Object Notation (JSON)

T. ARNOLD

JSON is a very popular format for storing data, particularly data that is
served or stored on a web server. JavaScript is the de facto language of the
internet, so it is not surprising we use a data format devised for this
language online.

The thing that makes JSON data tricky for data science is that it does not
need to be (and rarely is) tabular. It often has a nested structure that
needs to be manually and carefully turned into a rectangular data format.

JSON Elements

T. ARNOLD

JSON has six data types:

- Numbers: just what you think; all numbers are doubles (no seperate integers)
- Strings: a string (UTF-8 encoding)
- Boolean: either true or false; what R classes lgl/logical
- Array: similar to an unnamed R list; can contain any other object type
- Object: similar to a named R list with unique names; can contain any other object
- null: a special value used to representing missing data

The abilty for Arrays and Objects to contain other arrays and objects is what allows JSON
data to be incredibly flexible, useful, and (for us) difficult.

JSON Example

T. ARNOLD

{
"firstName": "John",
"isAlive": true,
"age": 27,
"address": {
"streetAddress": "21 2nd Street",
"city": "New York",
"state": "NY",
"postalCode": "10021-3100"

},
"phoneNumbers": [
{
"type": "home",
"number": "212 555-1234"

},
{
"type": "office",
"number": "646 555-4567"

}
],
"children": ["Alice", "Jill"],
"spouse": null

}

Here is an example of a small data
set shown in JSON format (taken
from the Wikipedia page).

Note that names in Objects are
quoted and followed by a colon.

Newlines and spaces are ignored
when parsing and added here for
readability.

JSON in R

T. ARNOLD

Getting a JSON file into R is relatively easy. We just use the read_json() function just
as with a CSV file. The difference is that the object read into R will be, rather than a
tibble, a list object. Here are the rules for how R creates a list from JSON data:

- Scalar values (Numbers, Strings, Booleans, null) become length-1 vectors
- Arrays are turned into unnamed lists
- Objects are turned into named lists

In the code that follows, let’s assume that we have read the previous JSON file into R
using this code:

obj <- read_json("file.json")

Parsing JSON in R

T. ARNOLD

{
"firstName": "John",
"isAlive": true,
"age": 27,
"address": {
"streetAddress": "21 2nd Street",
"city": "New York",
"state": "NY",
"postalCode": "10021-3100"

},
"phoneNumbers": [
{
"type": "home",
"number": "212 555-1234"

},
{
"type": "office",
"number": "646 555-4567"

}
],
"children": ["Alice", "Jill"],
"spouse": null

}

> obj$firstName
[1] "John"

> obj$address
$streetAddress
[1] "21 2nd Street"

$city
[1] "New York"

$state
[1] "NY"

$postalCode
[1] "10021-3100"

Parsing JSON in R

T. ARNOLD

{
"firstName": "John",
"isAlive": true,
"age": 27,
"address": {
"streetAddress": "21 2nd Street",
"city": "New York",
"state": "NY",
"postalCode": "10021-3100"

},
"phoneNumbers": [
{
"type": "home",
"number": "212 555-1234"

},
{
"type": "office",
"number": "646 555-4567"

}
],
"children": ["Alice", "Jill"],
"spouse": null

}

tibble(
fname = obj$firstName,
age = obj$age

)

A tibble: 1 × 2
fname age
<chr> <int>

1 John 27

Parsing JSON in R

T. ARNOLD

{
"firstName": "John",
"isAlive": true,
"age": 27,
"address": {
"streetAddress": "21 2nd Street",
"city": "New York",
"state": "NY",
"postalCode": "10021-3100"

},
"phoneNumbers": [
{
"type": "home",
"number": "212 555-1234"

},
{
"type": "office",
"number": "646 555-4567"

}
],
"children": ["Alice", "Jill"],
"spouse": null

}

tibble(
part = names(obj$address),
value = flatten_chr(obj$address)

)

A tibble: 4 × 2
part value
<chr> <chr>

1 streetAddress 21 2nd Street
2 city New York
3 state NY
4 postalCode 10021-3100

Parsing JSON in R

T. ARNOLD

{
"firstName": "John",
"isAlive": true,
"age": 27,
"address": {
"streetAddress": "21 2nd Street",
"city": "New York",
"state": "NY",
"postalCode": "10021-3100"

},
"phoneNumbers": [
{
"type": "home",
"number": "212 555-1234"

},
{
"type": "office",
"number": "646 555-4567"

}
],
"children": ["Alice", "Jill"],
"spouse": null

}

map_chr(obj$phoneNumbers, ~ ..1$type)

[1] "home" "office"

Parsing JSON in R

T. ARNOLD

{
"firstName": "John",
"isAlive": true,
"age": 27,
"address": {
"streetAddress": "21 2nd Street",
"city": "New York",
"state": "NY",
"postalCode": "10021-3100"

},
"phoneNumbers": [
{
"type": "home",
"number": "212 555-1234"

},
{
"type": "office",
"number": "646 555-4567"

}
],
"children": ["Alice", "Jill"],
"spouse": null

}

tibble(
fname = obj$firstName,
type = map_chr(obj$phoneNumbers, ~ ..1$type),
num = map_chr(obj$phoneNumbers, ~ ..1$number)

)

A tibble: 2 × 3
fname type num
<chr> <chr> <chr>

1 John home 212 555-1234
2 John office 646 555-4567

