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iotools: High-Performance I/O Tools for R
by Taylor Arnold, Michael J. Kane, and Simon Urbanek

Abstract The iotools package provides a set of tools for input and output intensive data processing in
R. The functions chunk.apply and read.chunk are supplied to allow for iteratively loading contiguous
blocks of data into memory as raw vectors. These raw vectors can then be efficiently converted
into matrices and data frames with the iotools functions mstrsplit and dstrsplit. These functions
minimize copying of data and avoid the use of intermediate strings in order to drastically improve
performance. Finally, we also provide read.csv.raw to allow users to read an entire dataset into
memory with the same efficient parsing code. In this paper, we present these functions through a
set of examples with an emphasis on the flexibility provided by chunk-wise operations. We provide
benchmarks comparing the speed of read.csv.raw to data loading functions provided in base R and
other contributed packages.

Introduction

When processing large datasets, specifically those too large to fit into memory, the performance
bottleneck is often getting data from the hard-drive into the format required by the programming
environment. The associated latency comes from a combination of two sources. First, there is hardware
latency from moving data from the hard-drive to RAM. This is especially the case with “spinning”
disk drives, which can have throughput speeds several orders of magnitude less than those of RAM.
Hardware approaches for addressing latency have been an active area of research and development
since hard-drives have existed. Solid state drives and redundant arrays of inexpensive disks (RAID)
now provide throughput comparable to RAM. They are readily available on commodity systems
and they continue to improve. The second source comes from the software latency associated with
transforming data from its representation on the disk to the format required by the programming
environment. This translation slows down performance for many R users, especially in the context of
larger data sources.

We can compare the time needed to read, parse, and create a data frame with the time needed to
just read data from disk. In order to do this, we will make use of the “Airline on-time performance”
dataset, which was compiled for the 2009 American Statistical Association (ASA) Section on Statistical
Computing and Statistical Graphics biannual data exposition from data released by the United States
Department of Transportation (RITA, 2009). The dataset includes commercial flight arrival and
departure information from October 1987 to April 2008 for those carriers with at least 1% of domestic
U.S. flights in a given year. In total, there is information for over 120 million flights, with 29 variables
related to flight time, delay time, departure airport, arrival airport, and so on. The uncompressed
dataset is 12 gigabytes (GB) in size. While 12 GBs may not seem impressively “big” to many readers, it
is still large enough to investigate the performance properties and, unlike most other large datasets, it
is freely available. Supplemental materials, accessible at https://github.com/statsmaths/iotools-
supplement, provide code for downloading the dataset and running the benchmarks included in this
paper.

In a first step before measuring the time to load the dataset, column classes are defined so that
this part of the data frame processing does not become part of our timings. These can be inferred by
reviewing the dataset documentation and inspecting the first few rows of data. The column data types
for this dataset are given by:

> col_types <- c(rep("integer", 8), "character", "integer", "character",
+ rep("integer", 5), "character", "character",
+ rep("integer", 4), "character", rep("integer", 6))

Now, we will read in the file 2008.csv, which contains comma-separated values with 29 columns and
7,009,728 rows.

> system.time(read.csv("2008.csv", colClasses = col_types))[["elapsed"]]
[1] 68.257

It takes just over 68 seconds to read the file into R and parse its contents into a data frame object. We
can test how much of this time is due to just loading the results from the hard-drive into R’s memory.
This is done using the readBin function to read the file as a raw string of bytes and file.info to infer
the total size of the file; both functions are provided by the base package of R.

> system.time(readBin("2008.csv", "raw",
+ file.info("2008.csv")[["size"]]))[["elapsed"]]
[1] 0.493
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This takes less than one half of a second. It takes about 138 times longer to read and parse the data with
read.csv than to just read the data in as raw bytes, indicating there may be room for improvement.
This is not to say read.csv and its associated functions are poorly written. On the contrary, they are
robust and do an excellent job inferring format and shape characteristics from data. They allow users
to import and examine a dataset without knowing how many rows it has, how many columns it has, or
its column types. Because of these functions, statisticians using R are able to focus on data exploration
and modeling instead of file formats and schemas.

While existing functions are sufficient for processing relatively small datasets, larger ones require
a different approach. For large files, data are often processed on a single machine by first being
broken into a set of consecutive rows or “chunks.” Each chunk is loaded and processed individually,
before retrieving the next chunk. The results from processing each chunk are then aggregated and
returned. Small, manageable subsets are streamed from the disk to the processor with enough memory
to represent a single chunk required by the system. This approach is common not only in single
machine use but also in distributed environments with technologies such as Spark (Zaharia et al., 2010)
and Hadoop MapReduce (Dean and Ghemawat, 2008). Clusters of commodity machines, such as
those provided by Amazon Elastic Compute Cloud (EC2) and Digital Ocean, are able to process vast
amounts of data one chunk at a time. Many statistical methods are compatible with this computational
approach and are justified in a variety of contexts, including Hartigan (1975), Kleiner et al. (2014),
Guha et al. (2012), and Matloff (2016).

However, base R together with the contributed packages currently does not provide convenient
functionality to implement this common computing pattern. Packages such as bigmemory (Kane
et al., 2013) and ff (Adler et al., 2014) provide data structures using their own binary formats over
memory-mapped files stored on disk. The data structures they provide are not native R objects.
They therefore do not exhibit properties such as copy-on-write behavior, which avoids making
unnecessary copies of the dataset in memory (Rodeh, 2008), and, in general, they cannot be seamlessly
integrated with R’s plethora of user contributed packages. The readr package (Wickham et al.,
2016) provides fast importing of "data.frame" objects but it does not support chunk-wise operations
for arbitrarily large files. The foreach package (Revolution Analytics and Weston, 2015a), and its
associated iterators package (Revolution Analytics and Weston, 2015b), provide a general framework
for chunked processing but does not provide the low-level connection-based utilities for transforming
binary data stored on the disk to those native to R.

The iotools package provides tools for data processing using any data source represented as
a connection (Arnold and Urbanek, 2015). Users of the package can import text data into R and
process large datasets iteratively over small chunks. The package’s functions can be several orders of
magnitude faster than R’s native facilities. The package provides general tools for quickly processing
large datasets in consecutive chunks and provides a basis for speeding up distributed computing
frameworks including Hadoop Streaming (The Apache Software Foundation, 2013) and Spark.

The remainder of this paper introduces the use of the iotools package for quickly importing
datasets and processing them in R. Examples center around the calculation of ordinary least squares
(OLS) slope coefficients via the normal equations in a linear regression. This particular application
was chosen because it balances read and write times with processing time.

Input methods and formatters

R’s file operations make use of Standard C input and output operations including fread and fwrite.
Data are read in, elements are parsed, and parsed values populate data structures. The iotools package
also uses the Standard C library but it makes use of “bulk” binary operations including memchr and
strchr. These functions make use of hardware specific, single instruction, multiple data operations
(SIMD) and tend to be faster than their Standard I/O counterparts. (See, for example, Zhou and Ross
(2002) for a complete overview of the benefits and common implementations of SIMD instructions.)
As a result, iotools is able to find and retrieve data at a higher rate. In addition, an entire dataset or
chunk is buffered rather than scanned and transformed line-by-line as in the read.table function.
Thus, by buffering chunks of data and making use of low-level, system functions iotools is able to
provide faster data ingestion than what is available in base R.

Importing data with dstrsplit and read.csv.raw

A core function in the iotools package is dstrsplit. It takes either a raw or character vector and
splits it into a data frame according to a specified separator. Each column may be parsed into a
logical, integer, numeric, character, raw, complex or POSIXct vector. Columns of type factor are
not supported as a method of input, though columns may be converted to a factor once the dataset is
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platform method integer logical num char num & char complex raw

Ubuntu 16.04 readRDS 0.1 0.1 0.2 7.0 7.2 2.0 0.1
Ubuntu 16.04 dstrsplit 0.8 1.0 2.7 2.6 5.2 5.1 0.6
Ubuntu 16.04 read_csv 1.5 1.7 5.9 2.5 9.7 · ·
Ubuntu 16.04 read.csv 11.0 15.0 50.2 9.0 59.4 96.2 8.4

macOS Sierra readRDS 0.2 0.2 0.3 5.4 6.5 1.9 0.1
macOS Sierra dstrsplit 0.9 1.0 2.8 2.4 5.2 5.3 0.6
macOS Sierra read_csv 1.4 1.5 6.2 2.0 8.0 · ·
macOS Sierra read.csv 8.6 11.1 39.3 6.7 46.6 70.1 6.2

Windows 7 readRDS 0.1 0.1 0.3 5.6 6.1 2.3 0.1
Windows 7 dstrsplit 1.5 1.3 4.4 2.7 5.6 8.8 0.7
Windows 7 read_csv 1.3 1.9 8.9 1.7 7.6 · ·
Windows 7 read.csv 6.3 7.5 25.7 4.7 29.7 48.1 3.8

Table 1: Time in seconds (average over 10 replications) to import a data frame by element type.
Each data frame has 1 million rows and 25 columns of the specified data, except for the “num &
char” column which has 25 columns of character values interleaved with 25 columns of numeric
columns. Note that read_csv, from the readr package, does not support complex and raw types. Linux
benchmarks used a server with a 3.7 GHz Intel Xeon E5 and 32 GB of memory. Mac benchmarks used
a mid-2015 MacBook Pro with 2.5 GHz Intel Core i7 and 16 GB of memory. Windows benchmarks
used a desktop machine with a 3.2 GHz Intel Core i5 CPU and 8 GB of memory.

loaded. It will be shown later that dstrsplit can be used in a streaming context and in this case data
are read sequentially. As a result, the set of factor levels cannot be deduced until the entire sequence is
read. However, in most cases, a caller knows the schema and is willing to specify factor levels after
loading the data or is willing to use a single pass to find all of the factor levels.

The tools in iotools were primarily developed to support the chunk-wise processing of large
datasets that are too large to be read entirely into memory. As an additional benefit it was observed
that these functions are also significantly faster when compared to the read.table family of functions
when importing a large plain-text character separated dataset into R. The readAsRaw function takes
either a connection or a file name and returns the contents as a raw type. Combining this with
dstrsplit, we can load the 2008.csv file significantly faster:

> system.time(dstrsplit(readAsRaw("2008.csv"), sep = ",",
+ col_types = col_types))[["elapsed"]]
[1] 14.087

This takes about 14 seconds, which is roughly a five-fold decrease when compared to the read.csv
function. In order to simplify its usage, the function read.csv.raw was written as a wrapper around
dstrsplit for users who want to use iotools to import data in a manner similar to read.table:

> system.time(read.csv.raw("2008.csv", colClasses = col_types))[["elapsed"]]
[1] 14.251

The performance is very similar to the dstrsplit example.

Table 1 shows the time needed to import a data file with 1,000,000 rows and 25 columns using
readRDS, dstrsplit, read_csv (from the readr package), and read.table. Imports were performed
for each of R’s native types to see how their different size requirements affect performance. The
return value of read_csv includes additional metadata because a ‘tbl_df’ object is returned, which is
a subtype of R’s native "data.frame" class. Otherwise all functions return the exact same data. The
benchmarks show that, except for character vectors, readRDS is fastest. This is unsurprising since
readRDS stores the binary representation of an R object and importing consists of copying the file to
memory and registering the object in R. read_csv’s performance is reasonably close to those of iotools
across all three platforms and data types. The iotools functions are generally faster on integer and
numeric types, whereas the readr functions are slightly faster on character types. In both cases, no
performance is lost when dealing with data sets that have mixed data types and results are consistent
across operating systems.
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Processing the model matrix

In this and the following section, we will show how to estimate, based on the entire Airline on-time
performance datase, the slope coefficients for the follwoing linear regression model using OLS:

ArrDelay ∼ DayO f Week + DepTime + Month + DepDelay. (1)

The OLS slope estimates can be calculated by creating the model matrix and applying the normal
equations to derive the coefficients. Given the size of the dataset in this example, it will not be possible
to calculate the normal equation matrices directly in memory. Instead, the model matrix will be created
sequentially over blocks of rows. As this dataset is further split with each year of data being stored in
a separate file, we will also need an outer loop over the available yearly files (1988 to 2008).

We first construct the model matrix and save it in a file on disk; the slope coefficients will be
calculated in a second step. Separate processing and model fitting in this case are mostly for the sake
of breaking down the example into digestible bits. In many real-world data challenges it may still be a
good idea, as it provides an intermediate way of checking whether problems arise while fitting the
model. Regardless if problems occur either due to a bug in the code or an interruption in computing
services, the model matrix does not need to be recalculated.

In order to construct a large model matrix file, we cycle over the individual data files and work
on each separately. Each file is loaded using the read.csv.raw function, the variables DayOfWeek and
Month are converted into factors. The departure time variable is given in a 24-hour format, in local
time, and with the colon removed from a standard representation of time. For example, 4:30pm is
given as “1630” and 5:23am is “523”. Our code extracts the hour and minute and converts the time
into minutes since midnight; less than 0.5% of the flights depart between midnight and 3:59am, so
ignoring the circular nature of time is reasonable in this simple application. Finally, the entire output
is stored as a comma separated file with the first column representing the response.

> out_file <- file("airline_mm.csv", "wb")
> for (data_file in sprintf("%04d.csv", 1988:2008)) {
+ df <- read.csv.raw(data_file, col_types = col_types)
+ df$DayOfWeek <- factor(df$DayOfWeek, levels = 1:7)
+ df$Month <- factor(df$Month, levels = 1:12)
+ df$DepTime <- sprintf("%04d", df$DepTime)
+ df$DepTime <- as.numeric(substr(df$DepTime, 1, 2)) * 60 +
+ as.numeric(substr(df$DepTime, 3, 4))
+
+ mf <- model.frame(ArrDelay ~ DayOfWeek + DepTime + DepDelay + Month, df)
+ mm <- cbind(model.response(mf), model.matrix(mf, df))
+ rownames(mm) <- NULL
+ writeBin(as.output(mm, sep = ","), out_file)
+ }
> mm_names <- colnames(mm)
> close(out_file)

The output connection is recycled in each iteration of the loop thereby appending each year’s data; the
names of the model matrix are stored in memory for the next step. In the end we have one large file
that contains the entire model matrix. The output is representative of the kinds of large datasets often
encountered in industry applications.

Fitting the model with mstrsplit and chunk.apply

With the model matrices created, the next step is to estimate the slope coefficients β in the model

Y = Xβ + ε, (2)

where Y, ε ∈ Rn, and β ∈ Rd, n ≥ d; each element of ε is an i.i.d. random variable with mean zero;
and X is a matrix in Rn×d with full column rank. The analytic solution for estimating the OLS slope
coefficients, β, is

β̂ =
(

XT X
)−1

XTY. (3)
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platform method integer logical num char complex raw

Ubuntu 16.04 readRDS 0.2 0.2 0.2 0.2 0.2 0.2
Ubuntu 16.04 mstrsplit 0.5 0.7 2.4 1.2 4.6 0.4
Ubuntu 16.04 as.matrix 11.2 15.2 50.6 16.0 98.3 12.0

macOS Sierra readRDS 0.2 0.2 0.2 0.2 0.2 0.2
macOS Sierra mstrsplit 0.6 0.8 2.7 1.3 4.8 0.4
macOS Sierra as.matrix 8.8 11.3 39.7 12.4 72.1 9.3

Windows 7 readRDS 0.1 0.2 0.1 0.1 0.3 0.1
Windows 7 mstrsplit 0.7 0.9 3.0 0.8 5.7 0.5
Windows 7 as.matrix 6.5 7.7 26.0 10.7 50.5 8.8

Table 2: Time in seconds to import a matrix by element type. Each matrix has 1 million rows and
25 columns. Linux benchmarks used a server with a 3.7 GHz Intel Xeon E5 and 32 GB of memory.
Mac benchmarks used a mid-2015 MacBook Pro with 2.5 GHz Intel Core i7 and 16 GB of memory.
Windows benchmarks used a desktop machine with a 3.2 GHz Intel Core i5 CPU and 8 GB of memory.

Consider the row-wise partitioning (or chunking) of Equation 2:
Y1
Y2
...

Yr

 =


X1
X2
...

Xr

 β +


ε1
ε2
...

εr

 ,

where Y1, Y2, ..., Yr; X1, X2, ..., Xr; and ε1, ε2, ..., εr are data partitions where each chunk is composed of
subsets of rows of the model matrix. Equation 3 may then be expressed as (Friedman et al., 2001),

β̂ =

(
r

∑
i=1

XT
i Xi

)−1 r

∑
i=1

XT
i Yi. (4)

The matrices XT
i Xi and XT

i Yi can be calculated on each chunk and then summed to calculate the slope
coefficients.

In the previous step, the data were read into a data frame, but we now need to read data into
a numeric matrix. Interestingly enough, this functionality is not provided in base R or the Matrix
(Bates and Maechler, 2017) package. Users who wanted to read data from a file into a matrix must
read it in as a data frame and then convert it using the as.matrix function. The iotools package fills
this gap by providing the function mstrsplit, a matrix import function similar to function dstrsplit.
Table 2 compares the performance of mstrsplit with read.table followed by a call to as.matrix along
binary importing using load. As with dstrsplit, mstrsplit outperforms the base R’s read.table
benchmarks by an order of magnitude.

In order to fit the model we will need to read from airline_mm.csv in chunks. The function
chunk.apply, provided in iotools, allows us to do this easily over an open connection. By default
the data is read in as 32MB chunks, though this can be changed by the CH.MAX.SIZE parameter to
chunk.apply. The parameter CH.MERGE describes how the outputs of all the chunks are combined.
Common options include list or, when the result is a single vector, c. Here, we use chunk.apply to
calculate the matrices XTy and XT X over chunks of the data:

> ne_chunks <- chunk.apply("airline_mm.csv",
+ function(x) {
+ mm <- mstrsplit(x, sep = ",", type= " numeric")
+ colnames(mm) <- mm_names
+ list(xtx = crossprod(mm[, -1]),
+ xty = crossprod(mm[, -1], mm[, 1, drop = FALSE]))
+ }, CH.MERGE = list)

Notice that we do not need to manually specify the chunks; this detail is abstracted away by the
chunk.apply function, which simply selects contiguous sets of rows for our function to evaluate. The
output of the chunk-wise operation can be combined using the Reduce function:

> xtx <- Reduce("+", Map(function(x) x$xtx, ne_chunks))
> xty <- Reduce("+", Map(function(x) x$xty, ne_chunks))

With these results, the regression function can be solved with the normal equations where d is small.
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Figure 1: Average time over ten iterations to fit a linear model over the Airline on-time performance
dataset as a function of the number of cores used and the number of parallel tasks used.

> qr.solve(xtx, xty)
[,1]

(Intercept) 0.5564085990
DayOfWeek2 0.5720431343
DayOfWeek3 0.8480978666
DayOfWeek4 1.2436976583
DayOfWeek5 1.0805744488
DayOfWeek6 -1.2235684080
DayOfWeek7 -0.9883340887
DepTime 0.0003022008
DepDelay 0.9329374752
Month2 0.2880436452
Month3 -0.2198123852
...

The technique used by the lm function is similar to our approach, except that the QR-decomposition
there is done directly on X itself rather that on XT X. The difference is rarely an issue unless the
problem is particularly ill-conditioned. In these cases, a small ridge regression penalty can be added
to stabilize the solution (Friedman et al., 2001).

Parallel processing of chunks

In the example above the xtx and xty chunks are calculated serially. The chunk.apply function
includes a parameter, parallel, allowing the user to specify the number of parallel processes, taking
advantage of the embarrassingly parallel nature of these calculations. However, it is worth noting that
parallelism in the chunk.apply function is slightly different from other functions such as mclapply.

Most parallel functions in R work by having worker processes receive data and an expression
to compute. The master process initiates the computations and waits for them to complete. For
I/O-intensive computations this in general means that either the master loads data before initiating the
computation or the worker processes load the data. The former case is supported in iotools through
iterator functions (idstrsplit and imstrsplit), which are compatible with the foreach package.
However, in this case, new tasks cannot be started until data has been loaded for each of the workers.
Loading the data on the master process may become a bottleneck and it may require much more time
to load the data than to process it. The latter approach is also supported in iotools and ensures the
master process is not a bottleneck. If, however, multiple worker processes on a single machine load
a large amount of data from the same disk, resource contention at the system level may also cause
excessive delays. The operating system has to service multiple requests for data from the same disk
having limited I/O capability.
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A third option, implemented in chunk.apply, provides pipeline parallelism where the master process
sequentially loads data and then calls mcparallel to initiate the parallel computation. When the
maximum number of worker processes has been reached the master process pre-fetches the next chunk
and then blocks on the result of the running worker processes. When the result is returned a newly
created worker begins processing the pre-fetched data. In this way the master does not wait idly
for worker processing and there is no resource contention since only the master is retrieving data.
Pipeline parallelism increases execution throughput when the computation time is around the same
order as the load time. When the load time exceeds the execution time, the overhead involved in
initiating worker processes and getting their results will yield less desirable performance gains from
parallelization. In the case of particularly long load times, the overhead will overwhelm the process
and the parallel execution may be slower than a single serial calculation.

Figure 1 shows the times required to calculate XT X and XTY for the normal equations in the
regression described above using the three approaches described: all workers read, only the master
reads, and pipeline parallelism. Pipeline parallelism performs the best overall, with all workers
reading following close behind. However, all workers reading will only be able to keep pace with
pipeline parallelism as long as there is sufficient hard-drive bandwidth and little contention from
multiple reads. As a result, the pipeline parallel approach is likely a more general and therefore
preferred strategy.

Conclusion

This paper presents the iotools package for the processing of data much larger than memory. Tools
are included to efficiently load medium-sized files into memory and to parse raw vectors into matrices
and data frames. The chunk-wise functionality is used as a building block to enable the processing
of terabyte- and even petabyte-scale data. The examples emphasize computing on a single machine,
however iotools is by no means limited to this configuration. The “chunk” functions are compatible
with any object derived from a connection and can therefore be used with compressed files or even
pipes and sockets. Our current work, in fact, uses iotools as a building block for more tightly
integrating R into the Hadoop Streaming and Spark frameworks.
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