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Introduction 

Over the past decade, research in machine learning has made remarkable progress in the processing 
of text and image data. Computational models are now able to outperform human experts in certain 
classes of well-defined tasks. These improvements come in part through advances in computer 
hardware, as well as access to larger public datasets for training models. Perhaps the largest 
contributing factor, however, has been the refinement and application of so-called “deep learning” 
models. The incredible accuracy achieved through these models has led directly to read-world 
applications, including automated medical imaging diagnoses, prototypes for self-driving cars, and 
machine translation software. Of course, not all applications have resulted in a net-positive. Deep 
learning models have also been employed in troubling ways as tools for the security state, as 
justification for heavily policing minorities, and in the resurgence of a computational study of 
eugenics.1 The predictive power of deep learning demands that we take seriously the study of their 
structure and impact in society. The unmatched predictive power of these models in certain critical 
domains guarantee that deep learning will continue to inject algorithmic logic into critical 
decisions affecting everyday lives. 

Deep learning models are a class of algorithms that find latent hierarchical structures within large 
datasets. They are constructed my chaining together layers of smaller transformations. Taken 
together, these layers transform input data — raw text, images, sound files, and other unstructured 
formats — into predictive outputs that capture semantic features detected in the original data. 
While the internal structures of deep learning models make them ideal for certain tasks, these 
benefits come at a significant cost. State-of-the-art models contain dozens of layered models and 
billions of numerical parameters. This complexity makes their inner workings impossible to fully 
understand, even by experts in the field. 

In order to understand what exactly is meant by “deep learning”, we argue that the “depth” explicit 
in the term has a triple meaning: knowledgeable, the accuracy displayed in the model's ability to 
excel in certain image process tasks, layered, a visualization of the learned hierarchical structures, 
and impenetrable, the inherent lack of interpretability and understanding (such as in the “deep sea” 
or “deep space”) of their algorithmic operations. In this chapter, we interrogate these three 
meanings and then argue that all three are intricately linked to each other. There is no way to 
achieve the observed levels of accuracy without constructing layered models and introducing 
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black-box methods. Further, there is an intrinsic depth to the tasks in domains where deep learning 
models are applied. That is, depth is not just an instrumental feature of working with text and 
image data. The deepness is inherent in the tasks themselves. Meaningful computational results in 
these domains require a deep learning approach. Finally, we relate the essential deep nature of 
certain computational tasks to implications for future study in the humanities and social sciences 
and to the proliferation of deep learning models throughout society. We will limit our analysis to 
the task of processing image and text data, as they are particularly well suited for deep learning 
and also are a primary object of study for humanists and social scientists.  

Knowledgeable 

Deep learning techniques are now used in nearly all subfields of machine learning but are most 
well known for their application within predictive modelling. Predictive models make use of 
tagged datasets to algorithmically discover patterns that can be used to predict tags for new objects 
outside of the original collection. A classic example consists of starting with a collection of emails 
tagged as being “spam” or “not spam” and finding patterns that can be used to automatic spam 
detection on new messages. There are several classes of powerful, general purpose predictive 
models that are frequently used in machine learning. Linear regression, support vector machines, 
and gradient boosted trees have all been shown to produce reliably predictions within a wide range 
of applications.2 These models struggle, however, on some important classes of problems, most 
notably when applied to tasks involving the processing of text and image data. Processing 
unstructured inputs such as raw text and images are precisely the types of problems where deep 
learning models excel. 

The inherent difficulty of building predictive models with text and image data can be understood 
from two related perspectives. First, the way that text and image data are stored digitally does not 
directly capture semantic meaning. Consider, as a point of contrast, the task of predicting the sale 
price of a work of art. Features that may be available to determine the price include: who created 
the work of art, the medium of the object, the original date of creation, and its overall size. Each 
of these values measures real-world quantities that directly impact the value of the work. Compare 
this to the task of building a model that detects sarcasm in a corpus of text or determines the 
identities of people depicted in a collection of photographs. What features will be available for 
these tasks? Machine readable text is stored as a stream of characters. Digital images are 
represented as three rectangular grid of pixel intensities (red, green, and blue). Unlike the semantic 
variables describing the sale price of works of art, individual characters and pixels are essentially 
meaningless in isolation. It is only in context that we comprehend the significance of the textual 
or visual message. Further, there is no obvious alternative representation that would map directly 
into a semantic meaning.3 

                                                
2 Hastie, Trevor, Robert Tibshirani and Jerome Friedman, The Elements of Statistical Learning, 2nd ed. (New York: 
Springer, 2009). 
3 This is not entirely true for textual data. The characters could be grouped together into words in a process known 
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A second, closely related, challenge of working with text and image data concerns the machine 
learning concept known as dimensionality. Textual data are represented as a stream of characters; 
however, the converse does not hold: many streams of characters are not (understandable) textual 
documents. In fact, only a very small proportion of randomly constructed streams of characters 
will result in readable text. Similarly, almost no random constructed rectangular grids of pixels 
will resemble a recognizable image. Most will look like static noise. This creates a challenge for 
predictive models because the majority of possible inputs, random streams of characters or grids 
of pixels, fail to be sensible objects for consideration in the first place. Therefore, a predictive 
model must simultaneously detect the hidden structures within text and image data while also 
predicting the specific tag of interest. This task turns out to be very difficult but well-suited to deep 
learning approaches, the specifics of which we discuss in the next section.   

Text and image processing, in addition to being difficult objects of study in machine learning, 
share another common feature: the human brain seems particularly well-designed for both tasks.4 
The power of billions of interconnected neurons firing signals to one another inspired the 
neurophysiologist Warren McCulloch and logician Walter Pitts to design a computational model 
in which signals are passed between independent nodes using a threshold potential similar to the 
biochemical functioning of neurons.5 The approach of McCulloch and Pitts, applied to predictive 
modelling tasks, is considered the genesis of the class of models known as neural networks, the 
earliest example of a deep learning algorithm.6 Early work on neural networks was heavily 
integrated with neurophysiology. Modern developments have diverged sharply from biological 
motivations to the point where “state-of-the-art deep learning algorithms rely on mechanisms that 
seem biologically implausible.”7 Despite this disconnect, the language of neurology — neurons, 
neural networks, potential, long-term memory, activation functions, developmental networks — 
remains dominant within the machine learning community. Partially this is a result of momentum 
from the earliest research, but today also serves as a strong cultural signal that deep learning 
represents, more than alternatives, “real” human-like intelligence.8 

Interest in neural networks has varied over time. Early excitement was dampened by the negative 
results of Minsky and Papert, and the inability to train large networks with the computational 
resources available at the time.9 Advances in the 1980’s and 1990’s addressed some of these 
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“Toward an Integration of Deep Learning and Neuroscience,” Frontiers in Computational Neuroscience 10 (2016): 
94. 
9 Minsky, Marvin; Papert, Seymour, Perceptrons: An Introduction to Computational Geometry (Boston: MIT Press, 
1969). 



concerns and led to several well-known examples, including LeCun’s classification of hand-
written digits.10  However, continued computational challenges and lack of strong empirical 
motivations for neural network models held off general interest until very recently. 

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) is an image classification 
contest held annually since 2010 in which teams compete to build algorithms that classify images 
into one of one-thousand categories.11 In 2012, building off of nearly a decade of work refining 
neural network architectures, Alex Krizhevsky, Ilya Sutskever and Geoffry Hinton produced a 
winning neural network model — commonly known as AlexNet — that had a top-5 error rate of 
only 16%, compared to the 25% top-5 error rate achieved by the second place team’s model.12 In 
2017, for example, a neural network model achieved an error rate of only 2% on the ILSVRC 
dataset.13 Early and continued success on ILSVRC is largely seen to have launched the deep 
learning “revolution in computer vision”, which continues with no sign of slowing down anytime 
soon.14 Today, the vast majority of research in predictive models for computer vision is built on 
neural networks. Text analysis had at first been slower to adopt deep learning, but neural networks 
have recently become popular in the processing of text too. Neural networks have produced state-
of-the-art results in machine translation, sentiment analysis, and topic classification.15 

The popularity of deep learning models is a direct result of their unmatched power to produce 
predictive models for difficult tasks such as text and image processing. In other words, their ability 
to build off of existing knowledge to predict new knowledge. It is for this same reason that deep 
learning is an important object for humanistic study. Neural network applications are not contained 
to relatively obscure academic competitions; rather, they are already being employed today behind 
the scenes in a wide variety of applications. Some of these applications directly serve the public 
good, such as advances in the automated detection and classification of brain tumors from MRI 
scans.16 Others play directly into the needs of mass-surveillance.17 The power of deep learning 
allows for the automation of wide-scale privacy invasions for national and capitalistic motivations, 
without the limiting cost of human annotation. It is likely that many of the technological advances 

                                                
10 LeCun, Yann, Bernhard Boser, John S. Denker, Donnie Henderson, Richard E. Howard, Wayne Hubbard, and 
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true category is one of these five. Leeway is provided because some categories are incredibly difficult even for 
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“cup” and a “coffee cup”. Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton, “ImageNet Classification with 
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14 LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton, “Deep Learning,” Nature 521, no. 7553 (2015): 440. 
15 Howard, Jeremy, and Sebastian Ruder, “Universal Language Model Fine-Tuning for Text Classification,” 
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, no. 1 (2018): 328-339. 
16 Havaei, Mohammad, Axel Davy, David Warde-Farley, Antoine Biard, Aaron Courville, Yoshua Bengio, Chris 
Pal, Pierre-Marc Jodoin, and Hugo Larochelle, “Brain Tumor Segmentation with Deep Neural Networks,” Medical 
Image Analysis 35 (2017): 18-31. 
17 Levi, Gil, and Tal Hassner, “Age and Gender Classification Using Convolutional Neural Networks,” Proceedings 
of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2015): 34-42. 



of the near future, such as self-driving cars, will be built on top of deep learning models.18 In order 
to understand how these extant and future applications affect society, it is necessary to also 
understand the deep learning models themselves. The next section proceeds to explain the internal 
architecture of deep learning models and the relationship of this structure to their observed 
predictive strengths. 

Layered 

The focus of the discussion so far has been on the impressive predictive power of deep learning 
models in the difficult domains of text and image processing. Other than the original connection 
of neural networks to neurophysiology, which has largely been lost in modern developments, we 
have not explained why deep learning is particularly well-adapted to these applications. It is this 
task that we now address. As a starting point, a suitable definition of deep learning is required. 

Deep learning models apply a sequence of successive transformations to an input object of study 
and ultimately produce a modified output value. In the predictive modelling context, the final 
outputs are the predicted tags and the transformations are adaptively learned by a training 
algorithm applied to a large collection of pre-tagged objects. Each transformation should, at least 
in theory, assist in moving from “raw” input formats, such as pixel intensities or character streams, 
towards meaningful features that capture semantic meaning within an image or textual document. 
Typically, the first few transformations only consider interactions between small groups of nearby 
pixels or characters. Successive transformations are applied to larger “windows” of the object, 
with the final layers applied to the entire image.19 An example of a particular, highly idealized, 
deep learning model is useful to further explain the concept.  

Consider the example image in Figure 1 and the selected boxes of interest. The first few layers of 
a neural network may only look at nearby swatches of the image and convert the raw pixels into 
numbers that at first describe their overall color and shading. A slightly larger view provides 
information about the texture of the grass and edges that make up the nose of the man. Subsequent 
layers reveal small objects (nose), larger objects (faces), and finally objects within their context. 
A final layer, not shown within the boxes, could be applied to the entire image to aggregate 
information about the individual objects. This layer would capture features about the scene as a 
whole. Figure 2 shows a similar linguistic example. Subsequent layers of the neural network look 
at larger windows of the text by grouping characters into words, words into phrases, phrases into 
sentences, and sentences in entire documents.20 The layered nature of deep learning models, likely 
the original motivation behind the term “deep”, is the fundamental feature differentiating them 
from other approaches and directly addresses the representational issues presented as the primary 
challenges to working with text and image data.  

It is not an easy task to build deep learning models from scratch. Dozens of complex 
transformations operating seamlessly together must be created and iteratively modified in an 
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Obstacles for Self-Driving Cars: Fusing Deep Learning and Geometric Modelling,” Intelligent Vehicles Symposium, 
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19 Goodfellow, Ian, and Yoshua Bengio, Deep Learning (Boston: MIT Press, 2016). 
20 The models described here are, more precisely, examples of convolutional neural networks, or CNNs, which are 
frequently used in both text and image analysis. 



attempt to address the most challenging problems in predictive modelling. Very large datasets are 
required in order to estimate the hundreds of millions of parameters that describe state-of-the-art 
neural networks. Public datasets for training image models, such as the ILSVRC challenge and 
VGGFace2 dataset, typically provide millions of tagged images to produce accurate face-detection 
models.21 Once a large dataset is assembled, special hardware in the form of expensive and 
powerful graphical processing units (GPUs) are required in order to process such large datasets 
through the complex architectures of modern neural networks.22 Even with good training data and 
the required hardware, the actual construction of neural networks is still a significant challenge. 
Adjusting the millions of training parameters is known to be an incredibly fraught task; subtle 
changes to the structure of the network can drastically alter the output of the model.23 It would 
appear that the power of neural networks may be restricted to well-funded companies or research 
groups and available only for a small set of high-impact tasks for which the payoff in time and 
money is worthwhile. In practice, this is far from the case due to the special layered structure of 
deep learning models.  

When trained on sufficiently large image datasets, the initial transformations described by large 
neural networks tend to be generalizable to new problems unrelated to the original prediction task. 
Recall that the first layers in a neural network only work locally over small regions of an image. 
These initial layers detect general features such as shading, color, and texture. Even layers in the 
middle of the network correspond to rough shapes and the formation of larger objects. It is only 
the last few layers that are directly related to the specific predictive modelling tasks of interest. As 
a result, predictive neural networks can be adapted through the process of transfer learning to 
predict new outputs by re-using the trained values in the interior layers and only learning the form 
of the final 1-3 transformations. This drastically reduces the amount of data, hardware, and 
expertise required to construct a new model. For example, recently a research group built a highly-
predictive image processing neural network using a set of only 443 frontal chest x-ray images 
through transfer learning applied to the AlexNet model.24 They copied all but the final layer of the 
network and trained the relatively small set of final weights with their own data. The ability to 
perform transfer learning, which drastically increases the number of feasible applications of deep 
learning, is another direct feature of the layered nature of the models. 

The underlying idea of transfer learning — that interior layers in neural networks code generic 
features that can be adapted to new problems — can also be used to motivate the related concept 
of embeddings. An embedding applies a selection of lower level transformations from a neural 
network to an object of interest, the output of which can be viewed as a sequence of numeric 
values. In transfer learning a predictive model is built on top of these embedded values, but there 
is also intrinsic value in the embedding itself. Embeddings have, for example, recently received 
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attention in applications as diverse as cognitive psychology and the digital humanities.25 The 
numbers described by the embedding captures, according to our description of how neural 
networks function, important semantic features present within the input image or textual 
document. Each number in the embedding does not directly correspond to a meaningful quantity. 
Rather, the spatial relationships of the objects within the embedding capture various semantic 
meanings. Inputs with similar features, in particular, will have similar sequences of numbers. 
Connecting objects that have similar embeddings to one another has been shown to provide 
accurate image and document similarity metrics that require no manual tagging or re-training.26 
As an example, Figure 3 illustrates a two-dimensional word embedding for a small collection of 
words. The full embedding these are taken from were trained on the English-language text from 
Wikipedia containing 300,000 words arrange in 300-dimensional space.27 Food items and verbs / 
professions are visibly separated in the embedding space. Pairs of closely related terms, such as 
journalist-writer, believe-understand, and read-write, are embedding next to one another. Also, the 
profession “chef” is situated closer to the food items than any other As with transfer learning, the 
feasibility of embeddings are directly tied to the layered nature of deep learning models.  

The layered structure of deep learning models is a direct consequence of the challenges posed by 
the processing of image and textual data. Without the sequential application of transformations, 
deep learning would offer no immediate benefit to predictive modelling to these difficult classes 
of important machine learning problems. The layers also immediately make way for the important 
application of transfer learning and embeddings, without which deep learning models would be 
inaccessible to all but a small number of applications. Unfortunately, the layered nature also comes 
at the cost of interpretability. It is notoriously difficult, if not outright impossible, to comprehend 
how neural networks achieve their amazing predictive results. As we witness a proliferation of 
neural network applications in society, our inability to understand exactly what they are doing 
poses a number of concerns.  

Impenetrable 

Modern neural networks for text and image processing typically consist of dozens of layered 
transformations and hundreds of millions of learned parameters. Our description above of how 
neural networks transform images, by successively detecting larger and larger regions of interest 
and stitching them together, is a highly idealized version of how networks actually function. The 
general concepts have been validated through the efficacy of transfer learning and visualizations 
of embedding spaces, but the specific meaning of any given internal representation is generally 
impossible to discern. Because of the complex dependencies present within the layers of a neural 
network, classic approaches to interrogating a particular model, such as applying small 
perturbations to a single parameter and watching the result, are rarely very enlightening. The 
general lack of interpretability in deep learning is a well-known problem; several recent workshops 
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were specifically dedicated to papers on the interpretability of neural network models.28 A 
collection of approaches have been proposed in an attempt to build an understanding of how neural 
networks function. 

One approach for understanding the inner workings of neural networks is to focus on the objects 
in a predictive modelling task that are incorrectly tagged. One simple approach is to investigate 
those categories that have particularly high error rates. Does the model have trouble with a specific 
category or does it struggle to differentiate between a certain set of objects? Analysis of the results 
can be insightful in understanding the internal mechanisms of the neural network. For example, 
the ILSVRC challenge revealed that animals with distinctive furs (e.g., foxes, porcupines, and 
tigers) are particularly easy to classify. On the other hand, long slender objects (e.g., letter openers, 
flagpoles, and water bottles) are typically the hardest to detect. Abstract concepts such as 
“restaurant” and “grocery store” are also amongst the most difficult categories for algorithms to 
distinguish. 

Taken together, this evidence shows that neural networks are best at understanding localized 
features and struggle the most on categories that require putting together contextual knowledge 
across the entire image. Looking at specific objects that are misclassified by a model, the negative 
examples, is another method of understanding the behavior of neural networks. For example, an 
investigation of the negative examples from the GoogLeNet model — the 2014 winner of ILSVRC 
— showed particular difficulty with “images that contain multiple objects, images of extreme 
closeups and uncharacteristic views, images with filters, images that significantly benefit from the 
ability to read text [a salt shaker], images that contain very small and thin objects [fishing reel], 
images with abstract representations.”29 These highlight challenges in the existing model and 
suggest significant gaps between the way the model understands images and human-like 
processing of visual data. Ongoing research in computer vision is often motivated by 
understanding where, and ideally why, current models fail on certain tasks. 

Alternatively, another approach to understanding neural networks is to focus on objects where the 
model performs well. The motivation behind the use of neural networks is their incredible 
predictive power. It seems reasonable that if we want to understand how neural networks function 
some attention should be paid to the many objects that are correctly tagged. A clever approach to 
studying these positive examples is to occlude part of the object and observe the extent to which 
these occlusions effect the predicted categories. For an image, this involves replacing a region of 
the image with a monochromatic box, effectively hiding a region of the image from the neural 
network. 30 In text analysis, a similar approach removes one or more words or phrases.31 
Visualizing the regions that most directly impact the predicted values, and quantifying how much 
of the text or image can be removed without significantly impacting the results, provides an 
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additional understanding of how the neural network represents knowledge. Similarly, the 
embeddings of correctly classified categories can be investigated for each layer of a neural 
network. Identifying which layers separate specific categories provides a window into the specific 
role of each layer in the overall prediction task. 

Despite the existence of techniques for understanding neural network architectures, there remains 
a fundamental inability to understand how the network performs the task of transforming inputs 
into reliable predictions. Negative examples elucidate those abstract features that are generally 
missed by the network. Positive examples, along with occlusion, hint at those regions and features 
that are captured by the model. How these features are captured, however, remains a mystery. The 
fundamental trouble is the depth of the model. Each layer is co-dependent on all of the others and 
understanding the network therefore requires understanding the entire network all at once, which 
is impossible given the size and depth of modern neural networks. And the problem is only getting 
worse.  

Over time, neural networks have grown deeper and more complex. The wining ILSVRC model 
“ResNet” from 2015 had a total of 152 layers (for comparison, AlexNet has only 8 layers).32 By 
2016, the ResNet model had expanded to a total of 1000 layers.33 Popular models for text analysis 
now commonly employ recurrent neural networks, which contain complex architectures for storing 
“memories” as the network cycles through characters and words within a document. As further 
evidence to our inability to understand neural network models, recent research has revealed strange 
and unintuitive results from seemingly powerful predictive models. Carefully constructed 
perturbations can be applied to an image that is imperceptible to the human eye but cause arbitrarily 
large changes in the predicted tags associated with the image.34 Conversely, images that appear to 
be pure noise can be found that are confidently categorized with an extremely high probability on 
one particular tag. These examples point to a significant gap in the way that neural networks 
process data compared to the human processing of images and text. 

As neural networks become integrated into systems that directly affect people, it becomes 
increasingly important to understand how deep learning models function. Most of the work on 
interpretability has so far focused on understanding neural network in order to modify their 
architecture and improve the predictive power of future models. However, it is arguably even more 
important to understand the models from a social perspective. How can we be convinced that an 
algorithm for tracking passengers at airport security are not motivated by racial profiling? What 
checks exist to detect when models employed by the medical industry are being optimized for 
insurance money rather than patient health? Or, what confidence do we have that autonomous 
vehicles trained in sunny California will accurately deal with snowy New England winters? All of 
these questions can be addressed on a macroscopic scale through external validation and regulatory 
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transparency, but it becomes difficult for an individual to trust or challenge the results of a specific 
model that alludes any direct ability to understand its internal mechanisms. 

While many machine learning algorithms have been characterized as being uninterpretable black 
boxes, our characterization of neural networks as impenetrably difficult to understand draws on 
features unique to deep learning methods. Figure 4 displays a schematic representation of a 
“shallow” — a model that is not deep — predictive model. A collection of transformations is 
applied to the raw input data and then combined together again to produce the output 
classifications. For comparison, Figure 5 provides a diagram of a deep learning model in which 
transformations are sequentially applied to the input data in order to yield the output categories. 
Shallow models may become quite complex if there are a large number of transformations. For 
example, models such as boosted trees also often involve millions of parameters and it can be 
difficult to understand how these parameters come together to produce a final set of predicted 
tags.35  However, shallow models can be decomposed into individual elements that each act 
independently on the input variables and produce distinct contributions to the output classification 
values. On a local level, at least, there is a possibility for understanding how regression and tree-
based models construct predictions from their inputs. In contrast, the layered structure of deep 
learning models makes even this level of understanding impossible. The lack of a local 
understanding makes it difficult to assess the structure of a neural network and determine whether 
a specific application is (algorithmically) reasonable or advisable. The layered structure, then, is a 
fundamental cause of the impenetrable nature of deep learning models. 

Unavoidable trichotomy 

We have shown that deep learning models exhibit their depth along three alternative meanings of 
the term “deep”. They exhibit a deep knowledge in understanding image and textual data by 
producing accurate labels for a range of predictive modelling tasks. This predictive power is 
achieved through structures that consist of a deep succession of transformations that gradually 
push the input objects towards the predicted output tags. Finally, these chains of interrelated 
transformations hide the parameters of the model with an impenetrable depth that obscures exactly 
how they arrive at their results. Crucially, we have seen that these three elements are related by far 
more than the polysemous nature of the English word “deep”. The layered nature of deep learning 
models is a necessary feature for their ability to make predictions for hard tasks such as text and 
image processing, and these layers in turn are fundamentally difficult to interpret. From the 
unavoidable interdependence between these elements of deep learning, we conclude here with 
implications for continued study of deep learning as an object of humanistic inquiry. 

First, it is important to start describing the concept of a deep problem in addition to deep learning. 
The way in which text and image data are stored, as streams of characters and pixel intensities, 
necessitate the use of layered models that modify the original data and represent objects within a 
new space. In other words, the nature of working with text and image data requires deep learning 
models in order to achieve high levels of accuracy. Analysis of these objects is an intrinsically 
deep problem, irrespective of the specific models used to study them. 

                                                
35 Caruana, Rich, Yin Lou, Johannes Gehrke, Paul Koch, Marc Sturm, and Noemie Elhadad, “Intelligible Models for 
Healthcare: Predicting Pneumonia Risk and Hospital 30-day Readmission.” Proceedings of the 21th ACM SIGKDD 
International Conference on Knowledge Discovery and Data Mining (2015): 1721. 



The classification of tasks, rather than the algorithms for performing them, as “deep” is important. 
It signals that many of the challenges underlying modern machine learning are actually problems 
of how knowledge is transmitted and represented. In turn, this directly draws connections from 
machine learning into well-trodden areas of humanistic inquiry such as epistemology, semiotics, 
and communication theory. Saussure’s assertion that words draw meaning in their “simultaneous 
coexistence of all the others” to other words maps directly into the model of a word embedding.36 
Autoencoders, a particular class of neural networks, provide a mathematical formulation directly 
related to Stuart Hall’s encoding/decoding model of social communication.37 Panofsky’s tripartite 
series of levels to understanding works of art, which starts with the literal subject matter and 
proceeds up through iconography and iconology, mirrors the layered hierarchy of levels in modern 
convolutional neural networks and hints at the application of transfer learning. 38 The first level of 
interpretation is, in theory, universal;  cultural considerations become more explicit higher up the 
chain of understanding. In short, by focusing on the tasks and not there explicit solutions we find 
numerous points of contact between predictive modelling tasks and ongoing questions in a wide 
range of other fields. Providing points of connection across fields allows for more productive 
critiques and fruitful interdisciplinary interactions. 

As a second implication, embeddings — the output of a particular sequence of transformations 
within a deep learning model — should be considered as an object of study in its own right. We 
have argued that the intermediate representations offered by the internal layers of a neural network 
do encode generalizable semantic information that can be utilized in new tasks through transfer 
learning. The internal representations, unlike the raw inputs, more directly contain useful semantic 
information that have the potential to allow for the utilization of shallow models, even for many 
complex tasks.39 If we are able to find good general purpose embeddings that work with shallow 
models, this would help alleviate some concerns about the lack of interpretability in deep learning 
models. While the process of converting raw inputs into the embedding space may remain opaque, 
with time and analysis, a direct characterization of the embedding space could be achieved. Several 
results suggest that a universal embedding, or a close approximation to one, could be attainable. 
In image processing, it has been shown that significant sequences of layers in neural networks can 
be inverted to recreate “photographically accurate information” about the image, establishing that 
relatively information is being lost in (at least the lower level) transformations.40 For text analysis, 
where transferable embeddings initially proved more difficult to detect, recent work has produced 
several candidates that appear to generalized very well to a variety of tasks.41 The culture in deep 
learning research of making research, code, and datasets openly available is a great start for making 
it possible to offer meaningful studies of embedding spaces. We now need more scholars actively 
engaged in treating these embeddings as an important object of study.   

                                                
36 Saussure, Ferdinand de, Cours de Linguistique Générale, trans. Roy Harris (Chicago: Open Court, 1998): 159. 
37 Hall, Stuart, “Encoding/decoding,” Culture, Media, Language (1980): 128-138. 
38 Panofsky, Erwin, Studies in Iconology. Humanistic Themes in the Art of the Renaissance, trans. Gerda S. 
Panofsky (New York: Routledge, 1972). 
39 That is, models that are shallow in respect to the embedding layer. They are still deep relative to the raw text or 
image input data. 
40 Mahendran, Aravindh, and Andrea Vedaldi, “Understanding Deep Image Representations by Inverting Them,” 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015): 5188-5196. 
41 Howard, Jeremy, and Sebastian Ruder, “Universal Language Model Fine-Tuning for Text Classification.” 
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, no. 1 (2018): 328-339. 



Finally, it is also important to train scholars from a wide range of fields in the technology of deep 
learning, specifically neural networks. Layered models that successively reparametrize raw inputs 
are, as we have seen, necessary for sufficiently predictive models. Deep learning techniques will 
likely remain popular for a considerable amount of time and are poised to become even more 
integrated into important real-world systems. We need domain experts from fields such as 
medicine, biology, public policy, law, economics, and across the humanities to understand this 
technology. To do so opens up avenues for both important innovations as well as meaningful 
critiques of current practices. As we have shown, deep learning models are difficult enough to 
comprehend even for those working in the field of machine learning who have been working with 
them for decades. Due to this complexity, meaningful collaborations between domain experts and 
researchers in deep learning require a working understanding of the power and challenges of neural 
networks across disciplinary boundaries. 

Deep learning approaches are here to stay. They offer amazing predictive accuracy and a plethora 
of exciting technological advances, but also make way for a wide range of troubling applications. 
As deep learning becomes increasingly ubiquitous in real-world systems, the unavoidable 
trichotomy between knowledge, layers, and a lack of interpretability has important implications 
for anyone concerned with the use and proliferation of algorithmic logic in society.42 Direct 
humanistic inquiry into the algorithms behind deep learning is needed as we grapple with their 
cultural and social implications. 

 

  

                                                
42 Noble, Safiya Umoja. Algorithms of Oppression: How Search Engines Reinforce Racism. (New York: NYU 
Press, 2018). 
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Figure 1 

Conceptual depiction of features detected by subsequent layers in a neural network when applied 
to a photograph image (Photo by Greg Parish, “NYC Central Park,” 2015; Licensed under CC-
BY 4.0). 

  



Figure 2 

Depiction of hierarchical features detected applying a neural network algorithm to a sentence of 
textual data. 

 

  



Figure 3 

A two-dimensional word embedding of various fruits, vegetables, occupations, and verbs. 

 

  



Figure 4 

Schematic visualization of a “shallow learning” predictive model. 

 

  



Figure 5 

Schematic visualization of a “deep learning” predictive model. 

 

 


