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Abstract
In this paper, we examine whether confidence scores produced by the C++ re-implementation of Whisper (Radford et al., 
in:  International conference on machine learning, 2023) can be used to score L2 learners of English and classify them. We 
test whether the language prediction and its probability can be used to classify French learners of English using a specifi-
cally collected dataset for read speech and a graded corpus, the ANGLISH corpus (Tortel and  Hirst, in: Proceedings of 
speech prosody 2010, 2010. https:// doi. org/ 10. 21437/ Speec hPros ody. 2010- 49). We show that probability scores associated 
with the Whisper subtokens can be used to classify learners into levels using the knn algorithm. We show the limitations 
of the language detection probability beyond an initial threshold where the native language L1 of the learner can actually 
be predicted by the speaker. We have also used the ISLE corpus (Menzel et al., in: Proceedings of LREC 2000: Language 
resources and evaluation conference, European Language Resources Association, 2000) to test the prediction of the levels 
of Italian and German learners of English (Atwell et al., in: ICAME Jurnal, 27:5–18, 2003). We show how language detec-
tion for Whisper’s multilingual larger models can be used to detect less advanced learners’ first language but cannot be used 
for learner level classification with advanced learners. Using a greedy alignment algorithm, we also discuss the confidence 
score assigned to Whisper output subtokens and how this may be used for speaker scoring, prediction of learner levels, and 
learner feedback. We show that low confidence scores and alternative transcriptions can be used as potential cues for learner 
pronunciation errors.

Keywords Audio LLM · Whisper · ASR · L2 speech · Computer-assisted pronunciation teaching (CAPT)

1 Introduction

The use of automatic speech recognition (ASR) in pronun-
ciation training dates back to the 1990s. A preliminary study 
pioneered the use of ASR in L2 pronunciation (Rogers et al. 
1994), showing that ASR helped improve intelligibility in 
the learner’s L2 and that the improved targeted phonetic 
contrasts ( ) were also found in 
untrained words. Watson et al. (1989) compared human 
and ASR evaluations of speech quality. Some researchers 
explored ways to integrate ASR in pronunciation train-
ing programs (Dalby & Kewley-Port, 1999), while oth-
ers focused on the creation of feedback derived from the 
ASR transcriptions. More recent studies (Inceoglu et al., 
2023) used Google’s ASR to measure the intelligibility of 
L2 speech (Taiwanese L1, English L2) and concluded that 
the rating-agreement between the ASR and native speak-
ers mostly depended on both the individual speakers and 
the speech style (i.e., word lists, read text or more natural 
speech). Similar systems have been developed with Open 
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Source release, such as KALDI (Povey et al., 2011), Vosk,1 
wav2vec 2.0 (Baevski et al., 2020). Previous studies focused 
on the discrepancies between the ASR output of L2 speech 
and the expected target (Chanethom & Henderson, 2022; 
Inceoglu et al., 2020). In this respect, an important contri-
bution is an analysis based on Weinberger’s Speech Accent 
Archive (Weinberger, 2015), which considers native and 
non-native varieties of English alike, to analyse how the 
ASR system Otter. ai performs in investigating the effect 
of syllable structures on the realisations of clusters and of 
vowel substitutions in relation to vowel spaces (Chan et al., 
2022). Another contribution to the analysis of learner speech 
based on ASR is an attempt at categorizing ASR errors in 
terms of phonological features (Arora et al., 2018) such as 
high or low vowels or coronal or labial consonants.

Large Language Models (LLMs) have been exploited to 
analyse learner errors but on written data. For speech data, 
audio LLMs have been used to analyse accented speech rec-
ognition (Aksënova et al., 2022). Previous research on Whis-
per (Radford et al., 2023) related to accentedness includes 
a comparison of ASR performance (including Whisper) for 
Indian native and non-native speech (Javed et al., 2023). 
Experiments in audio LLMs with accented speech has 
mostly focused on customising text-to-speech systems (Cas-
anova et al. 2022; Jiang et al., 2023). For example, VALL-E 
X (Zhang et al., 2023) produces “cross-lingual speech syn-
thesis”, a synthetic text-to-speech in a foreign language with 
a textual prompt and a sound sample of a speaker’s voice. 
Previous research on L2 speech has investigated the poten-
tial uses of ASR for diagnoses but not in an automatic way. 
Current Second Language Acquisition on Automatic Speech 
Recognition (ASR) concur on the importance of phone sub-
stitution (Chanethom & Henderson, 2022; Inceoglu et al. 
2020) for the main L2 detected errors. Islam et al. (2023) 
have also used wav2vec (Baevski et al., 2020) and Whisper 
with k-means but with MFCC representations. To the best of 
our knowledge, our paper is the first paper that uses Whisper 
probability scoring to investigate learner speech. Using a 
C++ implementation of Whisper (Gerganov, 2003), hereaf-
ter referred to as ‘Whisper’, we explore Whisper’s internal 
representations with the probabilities associated by the sys-
tem to the transcription task and to the language detection 
task detailed in Radford et al. (2023). Contrary to previous 
research on automatic phone-level pronunciation scoring 
[including the ‘Goodness of Pronunciation’ (GOP) (Witt 
& Young, 2000) measure this type of language scoring is 
not measured in relation to human judgements with forced 
alignment.

Whisper is a multilingual speech, large language model 
that has been trained for transcription and translation with 

thousands of hours of speech. It also has several multilingual 
models, as well as .en models trained with only English data 
designed to transcribe English exclusively. Table 1 lists the 
models used in this study.

Three main differences distinguish Whisper from ASR. 
First, Whisper has several models and may be able to pro-
duce both fine-grained interpretations of the speech signal 
with a tiny model and a potential gold standard with a 
medium model. The second difference is related to the 
multilingual training and the resulting language detection 
feature. Finally, within the C++ experimental implementa-
tion,2 some specific parameters on which the final output is 
based can be accessed.

We explore how two Whisper functionalities (assigning a 
probability to the subtoken, language detection) can be used 
for non-native scoring and indirect analysis of pronunciation 
errors. The rest of the paper is structured as follows. Sec-
tion 2 presents our method and the data we used. Section 3 
presents our results and Section 4 discusses them. Section 5 
concludes.

2  Experimental design

For our experiments, we first present the linguistic data we 
used: read speech collected in a university to compare the 
Whisper transcriptions by the different models to the refer-
ence text (see Appendix 1). We also used two published 
learner corpora that had reference points for levels, the ISLE 
corpus (Atwell et al., 2003) and the ANGLISH corpus (Tor-
tel & Hirst, 2010) to test the Whisper functionalities to clas-
sify learners. We then present the main Whisper features 
we tested and the two metrics that we have used, the classic 
word error rate (WER) and the Levenshtein distance.

Table 1  Whisper models tested for our experiments

Size Parameters (M) Required VRAM 
(GB)

Speed (x)

Tiny 39  1  32
Base 74  1  16
Small 244  2  6
Medium 769  5  2
Large 1550  10  1
Large-v1 1550  10  1
Large-v2 1550  10  1

1 https:// alpha cephei. com/ vosk/. 2 https:// github. com/ ggerg anov/ whisp er. cpp.

https://otter.ai
https://alphacephei.com/vosk/
https://github.com/ggerganov/whisper.cpp
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2.1  Testing data

2.1.1  38 French learners of English (read speech)

For our first experiment, 25 female speakers and 13 male 
French speakers from the University of Limoges read two 
paragraphs from Conrad’s Typhoon (see Appendix 1)3. The 
Whisper .txt file outputs for the transcription and transla-
tion tasks were compared to the original text that was read 
by these second-year undergraduates. We used WER (Word 
Error Rate) and Levenshtein distance to assess the various 
graphic representations of the reference text as produced by 
Whisper (the .txt output of the LLMs) and to show how the 
differences can be transformed into operationalised feedback 
for learners. We will suggest that many spelling variations 
from the reference transcription can be turned into phonetic 
diagnoses for segmental or suprasegmental errors.

2.1.2  60 speakers from the ANGLISH corpus (spontaneous 
speech)

Because we needed data tested for the levels of the learn-
ers, we also resorted to another corpus, the ANGLISH cor-
pus, designed by Tortel and Hirst (2010). She selected three 
types of speakers (native speakers, advanced and intermedi-
ate speakers of English) to test the scoring. The ANGLISH 
corpus is a corpus designed by Anne Tortel as part of her 
PhD and it corresponds to 60 monologues, by 10 men and 
10 women who were recorded in an an-echoic chamber to 
represent three levels of proficiency. FR1 corresponds to an 
intermediate level of English; these are subjects who stopped 
using English after the baccalaureate. The other group called 
‘FR2’ is meant to represent advanced learners of English; 
these were third-year undergraduate students at the Uni-
versity of Aix-en-Provence. The GB group corresponds to 
recordings of 20 anglophones, who had either a British or an 
American pronunciation. We used the Whisper tiny model 
and large models to produce their scores and our experi-
ments consist in trying to see if the average of the confidence 
scores produced by Whisper for each of the subtokens can 
be used to predict learner levels with the assumption that 
we should be able to classify three groups, FR1, FR2 and 
GB. We used the monologue task of the ANGLISH corpus, 
where subjects had to talk for 2 min.

2.1.3  26 German and Italian speakers from the ISLE corpus 
(read speech)

We used the graded data from the Interactive Spoken Lan-
guage Education (ISLE) corpus (Atwell et al., 2003). We 
re-organised the ELRA data compiled in 1999 in a unique 
dataset gathering metadata, prompts, objectives and expert 
annotations. We aggregated the sound files4 of the different 
sections (“blocks”) of the corpus per speaker. Three blocks 
correspond to the reading task of a passage from a novel and 
the other blocks aimed at evaluating more specifically pho-
nemes, weak forms, consonant clusters, connected speech 
processes and word-class alternating pairs using isolated 
sentences. Three native experts graded the learners for the 
quality of their English, we report the biased distribution 
in Table 4: the dataset of German speakers only included 
learners of level 3 and 4 and were more advanced than Ital-
ian speakers. We use this graded data to test the possibility 
of using Whisper to identify the native language or the level 
of the learner.

Fig. 1  Whisper confidence estimation of transcription subtokens 
tiny model, C++ implementation (Gerganov, 2003). (Color figure 
online)

3 We thank Maelle Amand for letting us use the dataset, described in 
Ballier et al. (2023). 4 The data was processed from the ELRA distribution.
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2.2  Whisper’s customised C++ implementation

The various predictions are associated with a score and we 
can produce these for the different languages. Conversely, 
language predictions can be queried for multilingual models 
only. Whisper has also been trained with unique monolin-
gual data in English, and these models can not be used to 
predict the language. With models trained with English data 
only (the .en models) and with the multilingual models, the 
C++ implementation allows the indirect display of prob-
abilities. The colours correspond to the ten gradient values 
of probabilities, following the formula available in the code:

Figure  1 represents the realisations of a male learner as 
analysed by the tiny model. The final [BLANK . audio 
] transcription corresponds to a coda hallucination. Silent 
Final sequences (usually over 2s) may trigger hallucinations 
(thank you”). Note that tokens are subdivided in subtokens 
(byte pair encoding) and subtokens are not morphologically 
motivated, hence “gir|lish” for girlish. The red colour cor-
responds to uncertain transcriptions (“and his dish up” for 
“his knees up”, see Appendix 1). Our C++ implementation 
allows the exportation of these subtokens and their prob-
abilities. We use another specific feature of large language 
models that distinguishes them from automatic speech: the 
fact that the linguistic data is encoded into subtokens in a 
phenomenon known as ‘byte-pair encoding’ (BPE). These 
byte-pair encoded units or ‘subtokens’, as we call them in the 
rest of the paper, are associated with probability prediction 
scores. The colour visualisation could be used in computer-
assisted pronunciation teaching (CAPT) systems to provide 
learner feedback on their phonetic realisations. The prob-
abilities correspond to the probability that the subtoken 
predicted by the LLM is true, and is presented by Gerganov 
as “confidence” of the model (Gerganov, 2003). Figure  1 
represents the realisations of a male learner as analysed by 
the tiny model. The final [BLANK . audio ] transcription 
corresponds to a coda hallucination. Silent Final sequences 
(usually over 2s) may trigger hallucinations (“thank you”). 
Note that tokens are subdivided into subtokens (byte pair 
encoding) and subtokens are not morphologically motivated, 
hence “gir|lish” for girlish. The red colour corresponds to 
uncertain transcriptions (“and his dish up” for “his knees 
up”, see Appendix 1). Our C++ implementation allows 
the exportation of these subtokens and their probabilities. 
We use another specific feature of large language models 
that distinguishes them from automatic speech: the fact that 
the linguistic data is encoded into subtokens in a phenom-
enon known as ‘byte-pair encoding’ (BPE). These byte-pair 
encoded units or ‘subtokens’, as we call them in the rest of 
the paper, are associated with probability prediction scores. 

3p × n_colors

The colour visualisation could be used in CAPT systems to 
provide learner feedback on their phonetic realisations. The 
probabilities correspond to the probability that the subtoken 
predicted by the LLM is true, and is presented by Gerganov 
as “confidence” of the model (Gerganov, 2003).

2.3  Evaluation metrics

To evaluate the transcriptions produced by the Whisper 
models, we used the standard metric for ASR, WER which 
can be defined as (1) (Martin et al., 1998)

where S represents the number of substitutions (errors where 
a word is replaced), D represents the number of deletions 
(errors where a word is missing in the hypothesis but pre-
sent in the reference), I represents the number of insertions 
(errors where an extra word is present in the hypothesis but 
not in the reference), and N represents the total number of 
words in the reference.

The Levenshtein distance (Levenshtein, 1966) between 
two strings a and b can be defined recursively as follows:

where leva,b(i, j) is the Levenshtein distance between the first 
i characters of a and the first j characters of b. ai and bj are 
the characters at positions i and j in strings a and b, respec-
tively. 1(ai≠bj) is an indicator function that returns 1 if ai is 
different from bj , and 0 otherwise.

One of the contributions of our paper is that we tried to 
asses the distance between a reference text and a transcrip-
tion on a global level, but also at a token level, using a spe-
cifically designed alignment algorithm.

2.4  A greedy alignment algorithm

Because large language models require a subtokenization 
process sometimes called ‘byte pair encoding’ (BPE), we 
needed to create a script that would re-align not only the 
Whisper ASR transcriptions but also the subtokens produced 
by the LLM. To address the evaluation of the quality of the 
English on read speech where reference labels are available, 
we wrote an (R Core Team, 2024) script to compare the 
Whisper predictions at the subtoken level with the refer-
ence text and compute the Levenshtein distance at the token 
level. Figure  2 presents an output of this algorithm. The first 
column corresponds to the reference text token, the second 

(1)WER =
S + D + I

N
,

(2)leva,b(i, j) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

max(i, j) if min(i, j) = 0

min

⎧
⎪
⎨
⎪
⎩

leva,b(i − 1, j) + 1

leva,b(i, j − 1) + 1 otherwise

leva,b(i − 1, j − 1) + 1(ai≠bj)
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column corresponds to the textual output of the tokenized as 
a column. The pipe separates the different subtokens (as in 
Obs|erving). The third column corresponds to the merger of 
the different subtokens of the predictions, and the id blocks 
correspond to the strings of subtokens that do not match 
the reference transcription. This algorithm is a potential 
backbone for the detailed investigation. The probability of 
the subtoken and the time stamps can be extracted, so that 
further analyses could investigate the signal with the time 
stamps corresponding to putative transcription errors.

We have realigned the predictions on a token level, so that 
we have been able to reconstruct the tokens out of the sub-
tokens. This corresponds to the reference text. The second 
column corresponds to the subtokenized text and the cor-
responding probabilities that are assigned to this. Then we 
established the gap text, namely, the mismatches between the 
reference and the subtokenized text. We also report a string 
distance measure (the Levenshtein distance) between the 
reference token and the corresponding subtokens produced 
by Whisper. The algorithm is a greedy algorithm that tries to 
match the Whisper predictions expressed in subtokens with 
the reference text using punctuation symbols as reference 
points. As the discussion will show, this has consequences 
when a discrepancy between the number of commas can be 
observed in the transcriptions, but we managed to retain the 
initial texts with an align role function that corresponds to 
the tokenization of the reference texts. With the raw align-
ment, we can query the realizations of the different refer-
ence tokens by looking at the transcriptions of the different 
models using the same token in queries. Since it entails a 
situation with one-to-many and many-to-one, the align fil-
ter() makes it possible to visualize the situations of many-to-
one. This may correspond to some phonological phenomena 
such as “pale and” being reanalyzed as a clitic form “palen”, 
and it can also be another mismatch in terms of punctua-
tion symbols, reinterpreted as a comma, a semicolon like 
before “another” being retranscribed by Whisper as a full 
stop, since in our data we do not find any semicolons in the 
Whisper transcriptions. Two functionalities are implemented 
in this alignment algorithm. One allows for a strict compari-
son of the tokens from the point of view of the reference text 

and can be used to produce queries to analyze difficult words 
for learners that are probably mispronounced in the data. 
The second one might be more interesting for the analysis 
of the performance of the different models, since it focuses 
on the discrepancies between the transcriptions produced by 
the different models, the reference alignment focusing on the 
segments that do not match between the Whisper transcrip-
tion and the reference text. The column for refsize in the 
aligned version tells us how many linguistic tokens there 
are in the reference text column, and then API size indicates 
the number of tokens in the Whisper transcribed text. In this 
dataset, refsize is always 1.

The “Source alignment” allows the querying of the reali-
zations of the individual tokens of the source text, whereas 
the “Mistranscription alignment” is target-oriented and 
looks at the mismatches observed with the initial reference 
text and the potential reanalysis, either phonological or lexi-
cal. In the discussion section, we insist on the fact that (the 
greedy algorithm being based on punctuation), if a punctua-
tion mark is missing, it will look ahead in the transcription 
to find it. The detailed accuracy analysis of this prototype 
algorithm is beyond the remit of this paper, but we can pre-
dict that misalignments are more likely to be found when 
there are many punctuation signs in the reference text.

3  Results

3.1  Experiment 1: capturing learner data 
realisations with Whisper’s 12 models

Our results for our first experiment in Table 2 confirmed 
the relevance of the medium model as being closest to the 
reference text if we take the Levenshtein distance (LD) as 
reference. If we take into account WER, we observe that 
the difference between the tiny and tiny.en models is 
only marginally significant (t test, p = 0.03) for WER but 
the difference between the tiny and the large model is 
very significant ( p < 0.001 ) for WER. For Levenshtein dis-
tance, the difference is significant between the tiny and the 
tiny.en models (p < 0.01).

Fig. 2  Comparison of the two types of outputs produced by the align-
ment algorithm. The realisations of the reference text tokens can be 
queried with the alignment of the Whisper transcriptions to the refer-
ence text (source alignment, a). The transcription mismatches can be 

investigated with the second alignment (mistranscription alignment, 
b) that captures the mistranscriptions, enabling the computation of 
the Levenshtein distance
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This global analysis of the transcribed text by the differ-
ent Whisper models suggests that the tiny model is the 
most likely to be informative about learner pronunciation, 
assuming deviations in the transcriptions correspond to 
deviations from the expected phonetic realisations. Because 
there was less training data for the model, it is less robust 
and probably more sensitive to speech variability. One of 
the possible explanations why larger models do not perform 
better than the medium model is that we did not use the 
normalisation script used in Radford et al. (2022) to report 
WER results. Spelling variants like “sulphur”/“sulfur” 
“Herculian”/“Herculean” are not neutralised in our analysis.

3.2  The language detection feature

For this experiment, we exploit the two corpora that had 
different levels for the learners. For the ANGLISH corpus, 
the accuracy of the detection of the learner language is 80% 
for intermediate speakers FR1, but it should be borne in 
mind that the speakers were not tested for their phonetic 
proficiency during the data collection phase. Table 3 reports 
the language predicted for the three levels. We explain why 
cy is predicted for English speakers in the discussion sec-
tion, but the crucial result is advanced speakers (FR2) are 
now predicted as having English speech in 90% of the cases.

With the ISLE corpus, German learner speech files were 
predicted as being English speech input (see Table 4), but 
the corresponding learners also deemed to be of a higher 
level (3 or 4) by the ISLE annotators. Italian learner speech 
files were predicted as Latin (la), Slovenian (sl) or Italian by 
the tiny model. It should be noted that the size of the train-
ing data cannot explain why German learner productions 

were predicted as English speech, since German is more 
present in the training data (13,344 h for multilingual speech 
recognition and 4309 for Translation). Latin was used only 
for the Translation task (1614 h of training data), whereas 
Italian was used as training data for the multilingual speech 
recognition (2585 h) and translation (2145 h) as detailed in 
the appendix of Radford et al. (2023). For Italian learners’ 
data of the lower level, the first language is detected with 
100% accuracy. For Italian learners graded with level 2, a tie 
is observed between English and Italian. Further research is 
needed to estimate this observed threshold between the iden-
tification of the first language (here, Italian) and the identi-
fication of the target language (here, English). A systematic 
investigation of the phonetic realisations may account for 
these different predictions.

3.3  Exploiting subtoken probability

For the prediction of the language based on the levels of 
probability scores associated with subtokens, we first show 
that the means (Table 5) are consistent with the levels of the 

Table 2  Average distances 
to the reference text read by 
the learners according to the 
multilingual or English (.en) 
models whisper expressed as 
WER, standard error of the 
word error rate (SE), number of 
substitutions (sub), insertions 
(ins), deletions (del), number of 
tokens (nbtok) or Levenshtein 
distance (LD)

Model WER SE Sub Ins Del. nb.tok. (ref) nbtok (hyp) LD

tiny 0.279 0.021 60 24 34 462 448 386
tiny.en 0.242 0.011 54 21 27 462 453 318
base 0.224 0.009 47 19 29 462 448 294
base.en 0.211 0.008 43 16 31 462 444 271
small 0.174 0.007 32 12 30 462 440 226
small.en 0.169 0.007 31 11 29 462 440 217
medium 0.140 0.006 24 9 26 462 442 189
medium.en 0.146 0.006 24 8 30 462 437 191
large 0.132 0.006 21 9 26 462 441 233
large-v2 0.132 0.006 21 9 26 462 441 233

Table 3  Distribution of the 
language predicted for the three 
groups of the ANGLISH corpus 
(monologue task)

Predictions cy en fr

FR1 0 4 16
FR2 0 18 2
GB 1 19 0

Table 4  Distribution of the 
language predicted by the 
Whisper large model for the 
ISLE data (aggregated sound 
file)

Level L1 Large Count

1 Italian it 7
2 Italian en 6
2 Italian it 5
3 German en 8
3 Italian en 4
4 German en 15
4 Italian en 1

Table 5  Means and standard 
error per level in the ANGLISH 
data

Group Mu SE

FR1 0.87 0.01
FR2 0.89 0.01
GB 0.94 0.00
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ANGLISH corpus. Each language level can be differentiated 
between the different levels by looking at the means and the 
standard error.

Our hypothesis being that the sound files of higher levels 
are predicted with a higher probability, we also tested the 
reliability of these probability scores to assign speakers to a 
given level using the k-means algorithm, using an 80%-20% 
split of the data, 80% for training data, and 20% for testing 
data. For the ANGLISH corpus and its three levels, with 
k = 3, the global accuracy is only 70% but the accuracy for 
the prediction of the GB is 90%. Higher probability scores 
reasonably correlate with proficiency. Table 6 shows the 
confusion matrix of the predictions (as rows) of the three 
levels of the ANGLISH corpus.

3.4  Evaluating realisations with the alignment 
algorithm

Searching for the transcription of individual tokens likely 
to be mispronounced shows how variable the graphic tran-
scriptions of the Whisper models are. Previous research 
shows that only 16.1% of the mistranscriptions are com-
mon between the tiny and the medium models. Further 
research is needed to identify tendencies in the conflict-
ing representations of the transcriptions produced by the 
Whisper models. Nevertheless, expected errors for learn-
ers can be observed in the transcriptions. leaden has a 
rarer realisation of the <ea> digraph as /e/, as opposed 
to the most frequent realisations of the verb lead. This 
may explain forms like leading of lid (see Appendix 3). 
Several reanalyses of leaden as lead and can be found. 
Clitic realisations of <and> are probable in the training 
data, and this probably also accounts for transcriptions 
such as lid and. Such segmental errors are easier to iden-
tify than suprasegmental errors (Ballier & Martin, 2015) 
but some reanalyses can also be analysed as potential cues 
of suprasegmental errors. Many pentasyllabic realisations 
can be heard of uncomfortable, some of them with a tenta-
tive stress on the last but one syllable (see Appendix 2), 
and stress placement may account for some the mistran-
scriptions. Another case of putative signalling of stress 
displacement is the reanalysis of polysyllabic words like 
Herculean, which tends to be transcribed with a deter-
miner a/her because the first syllable is unstressed in the 
learner realisations. Herculean, which has a secondary 

stress /2010/, tends to be realised by learners as [0100], 
hence many reanalyses of the adjective as a determiner 
followed by a noun stressed on the first syllable like in 
a Korean (see other examples in Appendix 4). Display-
ing these alternative forms (“her cutely and”, “aircolion”) 
could be a functionality incorporated in a dashboard for 
CAPT systems to signal potential stress placement errors.

4  Discussion

Our prototype alignment script needs to be more system-
atically tested, especially for reference texts with complex 
punctuation, as the algorithm relies on punctuation for the 
alignment and Whisper does not seem to produce semi-
colons in its transcriptions. More generally, the analysis 
of the predictions of multilingual audio LLMs requires a 
sophisticated way to account for the interactions between 
the speech input, the training data, the architecture of the 
model and the BPE subtokens. We report some of our 
observations on Whisper with learner data.

4.1  Duration ablation

We have not tested the effect of duration of the sound file 
on the values reported for the probabilities of the subto-
kens (larger contexts may entail higher probability scores). 
We have, however, noted that the language detection prob-
ability was sensitive to duration of the speech input. With 
the ISLE data, we split the aggregated file into two, three, 
four or five sections of equal duration. The probability 
reported for the beginning of each split was very similar, 
but the probability varied as evidenced in the boxplot (see 
Fig. 3). Because the sound file aggregates the different 
prompts of the ISLE tasks, this variability can probably 
be explained by the fact that the learners varied in perfor-
mance for each of the prompts.

Whisper’s language detection feature should be used 
with caution, also because of the training data.

Table 6  Confusion matrix of 
the prediction of levels with the 
algorithm k-means with k = 3 
based on linguistic subtokens

Pred Group

FR1 FR2 GB

FR1 13 6 2
FR2 5 11 0
GB 2 3 18

Fig. 3  Variability of the language detection probability reported when 
the duration of the ISLE sound file of learner #003 is divided into 2, 
3 , 4 or 5
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4.2  Potential biases in the training data

From our experience, some learners can be labelled as ‘cy’, 
i.e., categorised as Welsh speakers. This is because of an 
error in some of the labels of the training data (reported in 
Radford et al., 2023); some sound files labelled as‘cy’ were 
actually recordings of English, so that Whisper has been 
partially trained to label speech as ‘cy’ for English data. The 
Whisper training data has not been made public, but some 
aspects of its bias can be observed from the outputs. The 
spelling is American and no semicolons were observed in 
our transcriptions. Using recordings of natives, the Ameri-
can speaker got a higher probability score of being English 
than a British speaker from the Midlands. More interest-
ingly, Irish speakers from the county Galway with rising 
intonation in assertions also had lower probability scores 
in language detection for a prosodic pattern (Urban North-
ern British Intonation) less frequently found in American 
speech. It seems reasonable to assume that the training 
data is American-centric and that fine-tuning Whisper with 
different varieties of English could be useful before using 
Whisper for prosodic training in CAPT systems. Another 
expected bias of the training data is the use of read speech: 
some speakers do have a realisation of Herculean as a [0100] 
variant, but not in scripted speech, judging from examples 
on YouGlish5 and this limited exposure to stress variability 
may account for the numerous reanalyses we observed.

One last potential source of bias is the byte pair encod-
ing. We probed the subtoken dictionaries of the Whisper 
models, which are identical for all the models, but this does 
not imply that the mapping of the acoustic signal to subto-
kens is identical. The variability of the number of subtokens 
produced by each model suggests the opposite. The analysis 
of the individual accuracy of the probability score assigned 
to individual subtokens is a daunting task. First, polysyl-
labic infrequent words are likely to be represented by several 
subtokens. Second, we would need to test the adequacy of 
the model output in relation to phonetic variability. In other 
words, are audio LLMs acoustic models? As a starting point, 
we report the discrepancies of the transcriptions at the sub-
token level in the next subsection where we compare three 
Whisper model outputs at subtoken level in relation to the 
speech signal.

4.3  Calibration curves and model response

The same speech input is transcribed differently by the 
Whisper models. Our results suggest that a correlation exists 
between a smaller Levensthein distance and a higher prob-
ability score of the subtokens. This does not imply that a 

high probability score is associated with a true prediction 
of the LLM. As an illustration of this point, we resorted to 
a method previously used to assess LLM predictions. For 
instance, Levinstein and Herrmann (2024) uses calibration 
curves to evaluate the accuracy of LLM statements regarding 
particular datasets and asserts that calibration serves as an 
additional measure for assessing the quality of the predic-
tions. We focused on the best model to emulate the reference 
(the medium model has the smallest Levensthein distance) 
and the tiny and tiny.en models are the best candi-
dates for the simulation of native misunderstandings. Pre-
vious results on WER discarding the normalisation scripts 
showed the medium model can do better on WER (Ballier 
et al., 2023). Table 2 shows the medium model does better 
for Levenshtein distance. To assess and visualise the quality 
of the model predictions, we manually annotated the accu-
racy of the subtoken predicted (positives, plotted on the Y 
axis), comparing the Whisper subtoken prediction to what 
can be construed from the sound file by a native speaker. 
The Y axis reports accuracy of the subtokens for tiny and 
tiny.en models, potential candidates for native simulated 
understanding of the speech input, and the medium model, 
a plausible candidate for the transcription of the target 
hypothesis (what the learner intended to say). Figure 4 plots 
the accuracy of the prediction according to the probability 
of the subtoken, which can be assimilated to the confidence 
that could be granted to the prediction.

In calibration curves, the optimal model follows the x = y 
line (represented as a dotted line). The tiny.en model is 
closer to the ideal calibration x equals y (represented here 

Fig. 4  Calibration curve for three Whisper models for the transcrip-
tion of the learner #003 from the ISLE corpus

5 https:// yougl ish. com/ prono unce/ Hercu lean/ engli sh?.

https://youglish.com/pronounce/Herculean/english?
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as the dashed line), which suggests that it might be more 
sensitive to learner deviations from the expected realisations, 
assigning lower probabilities for transcriptions that are not 
correct. Conversely, the medium model, being more robust, 
produces subtokens that are mostly accurate. The most 
striking phenomenon is the “overpessimistic” pattern of 
the medium prediction for lower probabilities. Why would 
this model, being better, have some low probabilities in the 
predicted subtokens? Qualitatively analyzing the low prob-
abilities of the medium predictions, we realised that many 
of them are actually subtokens forming part of linguistic 
tokens, so that there might be a form of architectural bias in 
the BPE where longer linguistic tokens are split into subto-
kens that are assigned lower probabilities.

5  Conclusion

For the data we tested, the native language of the lower-level 
learners can be predicted by larger Whisper larger models, 
but if English is predicted for a spoken input, the probability 
of such a prediction can not be used as a strict correlate of 
the learner level. The variability is too strong depending on 
duration of the speech input. In our data, a lower probability 
assigned to a subtoken is a potential plausible cue that the 
word was mispronounced. We show that this is consistent 
with the different learner levels, and that could be true for 
various L1s. We have shown the relevance of the scoring of 
the probability of the language course. This potential feed-
back for phonetic pronunciation errors based on the Whis-
per LLM is not L1-dependent, illustrating examples with 
French, German, and Italian learners of English. Some of the 
smallest Whisper models produce (mis)transcriptions that 
may be an adequate simulation of native misunderstanding 
of learner speech. This potential property should be sys-
tematically tested, for example comparing the recordings 
where “pigtail” was transcribed as “big tail” analysing VOT 
and pitch variability. More generally, the variability of the 
(mis)transcriptions across the different Whisper models of 
the same speech input needs to be explained for explainable 
artificial intelligence (XAI).

Appendix 1: Reference text of the reading 
task

Observing the steady fall of the barometer, Captain 
MacWhirr thought, “There’s some dirty weather knock-
ing about.” This is precisely what he thought. He had had 
an experience of moderately dirty weather-the term dirty 
as applied to the weather implying only moderate discom-
fort to the seaman. Had he been informed by an indisput-
able authority that the end of the world was to be finally 

accomplished by a catastrophic disturbance of the atmos-
phere, he would have assimilated the information under 
the simple idea of dirty weather, and no other, because he 
had no experience of cataclysms, and belief does not nec-
essarily imply comprehension. The wisdom of his county 
had pronounced by means of an Act of Parliament that 
before he could be considered as fit to take charge of a ship 
he should be able to answer certain simple questions on 
the subject of circular storms such as hurricanes, cyclones, 
typhoons; and apparently he had answered them, since he 
was now in command of the Nan-Shan in the China seas 
during the season of typhoons. But if he had answered he 
remembered nothing of it. He was, however, conscious of 
being made uncomfortable by the clammy heat. He came 
out on the bridge, and found no relief to this oppression. 
The air seemed thick. He gasped like a fish, and began to 
believe himself greatly out of sorts.

The Nan-Shan was ploughing a vanishing furrow upon 
the circle of the sea that had the surface and the shim-
mer of an undulating piece of gray silk. The sun, pale 
and without rays, poured down leaden heat in a strangely 
indecisive light, and the Chinamen were lying prostrate 
about the decks. [...] Captain MacWhirr noticed two of 
them especially, stretched out on their backs below the 
bridge. As soon as they had closed their eyes they seemed 
dead. Three others, however, were quarrelling barbarously 
away forward; and one big fellow, half naked, with hercu-
lean shoulders, was hanging limply over a winch; another, 
sitting on the deck, his knees up and his head drooping 
sideways in a girlish attitude, was plaiting his pigtail with 
infinite languor depicted in his whole person and in the 
very movement of his fingers. The smoke struggled with 
difficulty out of the funnel, and instead of streaming away 
spread itself out like an infernal sort of cloud, smelling of 
sulphur and raining soot all over the decks.

Appendix B: Examples of Whisper mistranscriptions 
of uncomfortable

Ref_text Model Gap_text Count

uncomfortable medium_en and comfortable 1
uncomfortable medium_en and comforted 1
uncomfortable medium_en comfortable 1
uncomfortable medium_en incompatible 1
uncomfortable medium “uncomfortable” 1
uncomfortable medium comfortable 1
uncomfortable tiny.en a comfortable 1
uncomfortable tiny.en and comfortable 4
uncomfortable tiny.en in campatible 1
uncomfortable tiny.en meant and capable 1
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Ref_text Model Gap_text Count

uncomfortable tiny.en of incontivable 1
uncomfortable tiny.en uncountable 1
uncomfortable tiny.en ungothable 1
uncomfortable tiny and comfortable 2
uncomfortable tiny comfortable 1
uncomfortable tiny incomparable 1
uncomfortable tiny incompatible 1
uncomfortable tiny main and comfortable 1
Uncomfortable tiny meant and comfortable 1
uncomfortable tiny uncorruptable 1
uncomfortable tiny ungovernable 1

Appendix C: Examples of Whisper mistranscriptions 
of leaden

Ref_text Model Gap_text Count

leaden medium_en , leading it 1
leaden medium_en laden 1
leaden medium_en lead and 2
leaden medium_en leading 4
leaden medium_en leading it 1
leaden medium_en linen and 1
leaden medium_en Unleaded 1
leaden medium , leading 2
leaden medium , leading heads 1
leaden medium , leading it 1
leaden medium , let on 1
leaden medium , letting it 1
leaden medium -laden heats 1
leaden medium a laden 1
leaden medium laden 4
leaden medium laden , ate 1
leaden medium laden heats 2
leaden medium laden hits 1
leaden medium lead and 1
leaden medium lid and 3
leaden medium lid and hip 1
leaden medium lid and hit 1
leaden tiny.en , leading 1
leaden tiny.en -leading 1
leaden tiny.en a little 1
leaden tiny.en laddened 1
leaden tiny.en lead and 15
leaden tiny.en lead and hits 1
leaden tiny.en lead in 3
leaden tiny.en leading 2
leaden tiny.en leading heads 1
leaden tiny.en leading it 1
leaden tiny.en lid and hit 1

Ref_text Model Gap_text Count

leaden tiny.en little 1
leaden tiny , leading 2
leaden tiny , leading heads 1
leaden tiny , leading hits 1
leaden tiny , leading it 1
leaden tiny , led 1
leaden tiny , lit 1
leaden tiny foredown led 1
leaden tiny laden 3
leaden tiny laden hits 1
leaden tiny lead and 11
leaden tiny lead in 2
leaden tiny leading hits 1
leaden tiny linen , hit 1
leaden tiny on lead and 1
leaden tiny powered and ledon 1
leaden tiny the hidden hits 1
leaden tiny the lead in 1
leaden tiny the unleading hits 1

Appendix D: Examples of Whisper 
mistranscriptions of Herculean

Ref_text Model Gap_text Count

herculean medium_en a Korean 1
herculean medium_en a cholera 1
herculean medium_en a kulean 1
herculean medium_en achilles 1
herculean medium_en arkadian 1
herculean medium_en her Korean 1
herculean medium_en her chilean 1
herculean medium_en her clean 3
herculean medium_en her culean 1
herculean medium_en her curling 1
herculean medium_en hickory 1
herculean medium Herculean 1
herculean medium a Cullian 1
herculean medium aculure on 1
herculean medium arcane 1
herculean medium arculean 1
herculean medium curly 1
herculean medium her Acheulean 1
herculean medium her clean 3
herculean medium her curly on 1
herculean medium her killian 1
herculean medium heroclone 1
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Ref_text Model Gap_text Count

herculean medium oculial 1
herculean tiny.en Arkalian 1
herculean tiny.en a crayon 1
herculean tiny.en a curian 1
herculean tiny.en a curling 1
herculean tiny.en a hate -culline 1
herculean tiny.en aculean 1
herculean tiny.en aculian 1
herculean tiny.en air -culion 1
herculean tiny.en ekulean 1
herculean tiny.en her cally and 1
herculean tiny.en her clean 2
herculean tiny.en her curling 1
herculean tiny.en her curly and 1
herculean tiny.en her gluing 1
herculean tiny.en her kiln 1
herculean tiny.en herculine 1
herculean tiny.en oculi and 1
herculean tiny.en our culian 1
herculean tiny.en the hakiran , 1
herculean tiny a chulian 1
herculean tiny a chulian 1
herculean tiny a clean 1
herculean tiny a crayon 1
herculean tiny a heckling 1
herculean tiny aircolion 1
herculean tiny echelion 1
herculean tiny her Qulian 1
herculean tiny her chulian 2
herculean tiny her chuling 1
herculean tiny her clean 2
herculean tiny her collier and 1
herculean tiny her culean 1
herculean tiny her culey and 1
herculean tiny her curly and 2
herculean tiny her cutely and 1
herculean tiny her killer and 1
herculean tiny her killing 1
herculean tiny herculey and 1
herculean tiny herculian 1
herculean tiny herkali 1
herculean tiny herkilling 1
herculean tiny herkilly and 1
herculean tiny herkul and 1
herculean tiny hurtly enchilers 1
herculean tiny our Qliian 1
herculean tiny percolian 1
herculean tiny to be covered 1

Ref_text Model Gap_text Count

herculean tiny were her killion 1
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